首页> 外文期刊>Human-Machine Systems, IEEE Transactions on >Gesture-Radar: A Dual Doppler Radar Based System for Robust Recognition and Quantitative Profiling of Human Gestures
【24h】

Gesture-Radar: A Dual Doppler Radar Based System for Robust Recognition and Quantitative Profiling of Human Gestures

机译:手势雷达:一种基于双多普勒雷达的鲁棒识别和人类手势的定量剖析系统

获取原文
获取原文并翻译 | 示例

摘要

Gesture recognition is key to enabling natural human–computer interactions. Existing approaches based on wireless sensing focus on accurate identification of arm gesture types. It remains a challenge to recognize and profile the details of arm gestures for precise interaction control. In addition, current approaches have strict positioning requirements between radars and users, making them difficult for real-world deployment. In this article, we adopt the multisensor approach and present gesture-radar—a dual Doppler radar-based gesture recognition and profiling system, which can capture subtle arm gestures with less positioning or environmental dependence. Gesture-radar uses two vertically placed Doppler radars to collect complementary sensing data of gestures, based on which cross-analysis can be performed for gesture recognition and profiling. Specifically, we first propose a two-stage classification model and enhance the signal proximity matching method by applying constraint functions to the DTW algorithm, aiming to improve the accuracy of gesture type recognition. Afterward, we establish and analyze unique features from the time-frequency spectrogram, which can be used to characterize in-depth gesture details, e.g., the angle or range of an arm movement. Experimental results show that gesture-radar achieves up to 93.5% average accuracy for gesture type recognition, and over 80% precision for profiling gesture details. This proves that the proposed approach is viable and can work in real-world environments.
机译:手势识别是启用自然人计算机交互的关键。基于无线感应的现有方法专注于准确识别手臂姿态类型。识别和简化ARM手势细节仍然是一项挑战,以获得精确的相互作用控制。此外,目前的方法在雷达和用户之间具有严格的定位要求,使其难以实现现实世界部署。在本文中,我们采用多传感器方法和目前的手势雷达 - 一种基于双多普勒雷达的手势识别和分析系统,可以捕获具有较少定位或环境依赖的微妙臂手势。手势雷达使用两个垂直放置的多普勒雷达来收集手势的互补感测数据,基于可以对手势识别和分析进行的交叉分析。具体地,我们首先提出了一种两级分类模型,并通过将约束函数应用于DTW算法来提高信号接近匹配方法,旨在提高手势类型识别的准确性。之后,我们建立和分析来自时频谱图的独特特征,其可用于表征深入的手势细节,例如臂运动的角度或范围。实验结果表明,手势雷达达到姿态型识别的平均精度高达93.5%,且以超过80%的精度进行分析姿势细节。这证明了拟议的方法是可行的,可以在现实世界的环境中工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号