首页> 外文期刊>Heat and mass transfer >Numerical CFD analysis and experimental investigation of the geometric performance parameter influences on the counter-flow Ranque-Hilsch vortex tube (C-RHVT) by using optimized turbulence model
【24h】

Numerical CFD analysis and experimental investigation of the geometric performance parameter influences on the counter-flow Ranque-Hilsch vortex tube (C-RHVT) by using optimized turbulence model

机译:优化湍流模型的几何CFD分析和几何性能参数对逆流Ranque-Hilsch涡流管(C-RHVT)影响的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

This research article demonstrates how using different turbulence models may affect the temperature detachment (the temperature diminution of cold air ( increment T-c = T-i - T-c)) inside straight counter-flow Ranque-Hilsch Vortex Tube (RHVT). The code is utilized to find the optimized turbulence model for energy separation by comparison with the experimental data of the setup. To obtain the results with a minimum error, various turbulence models have been investigated in steady state and transient time-dependence modes. Results show that RNG k-epsilon turbulence model has the best correspondence with the obtained experimental data from the setup; therefore, by using a RNG k-epsilon turbulence model with respect to Finite Volume Method (FVM), all the computations have been carried out. Moreover, some geometric parameters are focused on the length of hot tube and number of nozzle intakes within divergent and convergent hot-tube. Numerical results present that there is an optimum angle for obtaining the highest refrigeration performance, and 2(omicron) divergence is the optimal candidate under our numerical analysis conditions. Length of hot tube which exceeds a critical length has slight effect on the refrigeration capacity. The critical length is L = 166 mm in our study. Temperature reduction sensitivity can be reduced by increasing number of nozzles and maximum temperature reduction can be obtained.
机译:本文研究了使用不同的湍流模型如何影响直向逆流Ranque-Hilsch涡流管(RHVT)内的温度分离(冷空气的温度降低(T-c = T-i-T-c增量))。通过与设置的实验数据进行比较,该代码可用于找到用于能量分离的优化湍流模型。为了获得具有最小误差的结果,已经在稳态和瞬态时变模式下研究了各种湍流模型。结果表明,RNGk-ε湍流模型与从设置中获得的实验数据具有最佳的对应关系;因此,通过针对有限体积法(FVM)使用RNGk-ε湍流模型,已完成了所有计算。而且,一些几何参数集中在热管的长度和发散和会聚的热管内的喷嘴入口的数量。数值结果表明,存在一个获得最佳制冷性能的最佳角度,在我们的数值分析条件下,2(微米)的散度是最佳的候选者。超过临界长度的热管长度对制冷量影响不大。在我们的研究中,临界长度为L = 166 mm。可以通过增加喷嘴数量来降低温度降低灵敏度,并且可以获得最大的温度降低。

著录项

  • 来源
    《Heat and mass transfer》 |2019年第9期|2559-2591|共33页
  • 作者单位

    PUT, Ahvaz Fac Petr, POB 6198144471, Ahwaz, Iran;

    PUT, Ahvaz Fac Petr, POB 6198144471, Ahwaz, Iran;

    PUT, Ahvaz Fac Petr, POB 6198144471, Ahwaz, Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号