首页> 外文期刊>Manuscripta Mathematica >The non-cancellation group of a direct power of a (finite cyclic)-by-cyclic group
【24h】

The non-cancellation group of a direct power of a (finite cyclic)-by-cyclic group

机译:(有限循环)逐循环组的直接幂的非取消组

获取原文
获取原文并翻译 | 示例

摘要

If M is a finitely generated group having a finite commutator subgroup, then the set χ(M) of all isomorphism classes of groups G such that G×ℤ≃M×ℤ is a finite set and coincides with the Mislin genus (M) of M if M is nilpotent. For such groups M, there is a group structure on χ(M) defined in terms of the indices of embeddings of G into M, for groups G representing elements of χ(M). Such embeddings do exist and their indices are necessarily finite. If M is nilpotent, then this group structure on χ(M) coincides with the Hilton-Mislin group structure on the genus of M. In this paper we calculate the group χ(H k ) where H k is the direct product of k copies of a group the form H=〈 a,b | a n=1, bab -1=a u 〉, for any relatively prime pair of natural numbers n,u. In particular we find that for each such group H we have an isomorphism χ(H 2)≃χ(H k ) whenever k>2.
机译:如果M是具有有限换向子子组的有限生成群,则组G的所有同构类的集合χ(M)使得G×ℤ≃M×ℤ是一个有限集合,并且与Mslin属(M)一致如果M是幂等的,则M。对于这样的组M,对于G(表示χ(M)的元素),在X(M)上存在根据G嵌入M的索引定义的组结构。这样的嵌入确实存在,并且它们的索引必然是有限的。如果M是幂零的,则在χ(M)上的该组结构与在M属下的Hilton-Mislin组结构重合。在本文中,我们计算出χ(H k )的组,其中H k 是组的k个副本的直接乘积,形式为H = = 1,bab -1 = a u 〉。特别地,我们发现,对于每一个这样的组H,只要k> 2,我们就具有同构χ(H 2 )≃χ(H k )。

著录项

  • 来源
    《Manuscripta Mathematica》 |2004年第4期|469-475|共7页
  • 作者

    Peter Witbooi;

  • 作者单位

    University of the Western Cape;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号