A model for cleaning a graph with brushes was recently introduced. Let α = (v 1, v 2, . . . , v n ) be a permutation of the vertices of G; for each vertex v i let ${N^+(v_i)={j: v_j v_i in E {rm and} j>,i}}${N^+(v_i)={j: v_j v_i in E {rm and} j>,i}} and N-(vi)={j: vj vi Î E and j < i}{N^-(v_i)={j: v_j v_i in E {rm and} j<,i}} ; finally let ba(G)=åi=1n max{|N+(vi)|-|N-(vi)|,0}{b_{alpha}(G)=sum_{i=1}^n {rm max}{|N^+(v_i)|-|N^-(v_i)|,0}}. The Broom number is given by B(G) = max α b α (G). We consider the Broom number of d-regular graphs, focusing on the asymptotic number for random d-regular graphs. Various lower and upper bounds are proposed. To get an asymptotically almost sure lower bound we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even) and analyze it using the differential equations method (for fixed d). We further show that for any d-regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4 brushes are needed to clean a graph using this sequence. For an asymptotically almost sure upper bound, the pairing model is used to show that at most n(d+2Ö{d ln2})/4{n(d+2sqrt{d ln 2})/4} brushes can be used when a random d-regular graph is cleaned. This implies that for fixed large d, the Broom number of a random d-regular graph on n vertices is asymptotically almost surely fracn4(d+Q(Öd)){frac{n}{4}(d+Theta(sqrt{d}))}.
展开▼
机译:最近引入了一种用刷子清洁图形的模型。令α=(v 1 sub>,v 2 sub>,...,v n sub>)是G顶点的置换;对于每个顶点v i sub>,让$ {N ^ +(v_i)= {j:E {rm和} j>,i}} $ {N ^ +(v_i)= {j中的v_j v_i :E {rm and} j>,i}}中的v_j v_i和N - sup>(v i sub>)= {j:v j sub> v i sub>ÎE和j a sub>(G)=å i = 1 sub> n sup> max {| N + sup>(v i sub>)|-| N - sup>(v i sub>)|,0} {b_ {alpha}(G)= sum_ {i = 1} ^ n {rm max} {| N ^ +(v_i)|-|| N ^-(v_i)|,0}}。扫帚数由B(G)= max α sub> b α sub>(G)给出。我们考虑d-正则图的Broom数,重点是随机d-正则图的渐近数。提出了各种下限和上限。为了获得渐近几乎确定的下界,我们使用度贪心算法在n个顶点(具有dn偶数)上清除随机d-正则图,并使用微分方程法(对于固定d)对其进行分析。我们进一步表明,对于n个顶点上的任何d-正则图,都有一个清理序列,因此至少需要n(d + 1)/ 4个刷子才能使用该序列清理图。对于渐近几乎确定的上限,使用配对模型显示在以下情况下最多可以使用n(d +2Ö{d ln2})/ 4 {n(d + 2sqrt {d ln 2})/ 4}个画笔清除随机d-正则图。这意味着对于固定的大d,n个顶点上随机d-正则图的Broom数几乎可以肯定地渐近地为fracn4(d + Q(Öd)){frac {n} {4}(d + Theta(sqrt {d }))}。
展开▼