首页> 外文期刊>Graphical models >Surface-based analysis methods for high-resolution functional magnetic resonance imaging
【24h】

Surface-based analysis methods for high-resolution functional magnetic resonance imaging

机译:基于表面的高分辨率功能磁共振成像分析方法

获取原文
获取原文并翻译 | 示例

摘要

Functional magnetic resonance imaging (fMRI) has become a popular technique for studies of human brain activity. Typically, fMRI is performed with >3-mm sampling, so that the imaging data can be regarded as two-dimensional samples that average through the 1.5-4-mm thickness of cerebral cortex. The increasing use of higher spatial resolutions, <1.5-mm sampling, complicates the analysis of fMRI, as one must now consider activity variations within the depth of the brain tissue. We present a set of surface-based methods to exploit the use of high-resolution fMRI for depth analysis. These methods utilize white-matter segmentations coupled with deformable-surface algorithms to create a smooth surface representation at the gray-white interface and pial membrane. These surfaces provide vertex positions and normals for depth calculations, enabling averaging schemes that can increase contrast-to-noise ratio, as well as permitting the direct analysis of depth profiles of functional activity in the human brain.
机译:功能磁共振成像(fMRI)已成为研究人类大脑活动的一种流行技术。通常,fMRI是通过> 3-mm的采样执行的,因此成像数据可以视为二维采样,这些采样在大脑皮层的1.5-4-mm厚度范围内平均。更高的空间分辨率(<1.5毫米采样)的使用日益增多,使功能磁共振成像的分析变得复杂,因为现在必须考虑大脑组织深度内的活动变化。我们提出了一套基于表面的方法,以利用高分辨率功能磁共振成像技术进行深度分析。这些方法利用白色物质分割与可变形表面算法相结合,在灰白色界面和膜膜上创建平滑的表面表示。这些表面提供了用于深度计算的顶点位置和法线,从而实现了可以增加对比度与噪声比的平均方案,并可以直接分析人脑功能活动的深度分布。

著录项

  • 来源
    《Graphical models》 |2011年第2011期|p.313-322|共10页
  • 作者单位

    Imaging Research Center, 3925B West Broker Lane, University of Texas at Austin, Austin, TX 78757, USA;

    Center for Computational Visualization, 201 E 24th Street, University of Texas at Austin, Austin, TX 78712, USA;

    Imaging Research Center, 3925B West Broker Lane, University of Texas at Austin, Austin, TX 78757, USA;

    Imaging Research Center, 3925B West Broker Lane, University of Texas at Austin, Austin, TX 78757, USA;

    Imaging Research Center, 3925B West Broker Lane, University of Texas at Austin, Austin, TX 78757, USA;

    Imaging Research Center, 3925B West Broker Lane, University of Texas at Austin, Austin, TX 78757, USA;

    Center for Computational Visualization, 201 E 24th Street, University of Texas at Austin, Austin, TX 78712, USA;

    Imaging Research Center, 3925B West Broker Lane, University of Texas at Austin, Austin, TX 78757, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MRI; fMRI; neuroimaging; brain; laminae; segmentation; surface models; deformable surface; isosurfaces;

    机译:核磁共振;功能磁共振成像;神经影像脑;薄片分割;表面模型可变形表面等值面;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号