首页> 外文期刊>Granular Computing >Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition
【24h】

Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition

机译:手写数字识别的多分类器融合和CNN特征提取

获取原文
获取原文并翻译 | 示例

摘要

Handwritten digits recognition has been treated as a multi-class classification problem in the machine learning context, where each of the ten digits (0-9) is viewed as a class and the machine learning task is essentially to train a classifier that can effectively discriminate the ten classes. In practice, it is very usual that the performance of a single classifier trained using a standard learning algorithm is varied on different datasets, which indicates that the same learning algorithm may train strong classifiers on some datasets but weak classifiers may be trained on other datasets. It is also possible that the same classifier shows different performance on different test sets, especially when considering the case that image instances can be highly diverse due to the different handwriting styles of different people on the same digits. To address the above issue, development of ensemble learning approaches have been very necessary to improve the overall performance and make the performance more stable on different datasets. In this paper, we propose a framework that involves CNN-based feature extraction from the MINST dataset and algebraic fusion of multiple classifiers trained on different feature sets, which are prepared through feature selection applied to the original feature set extracted using CNN. The experimental results show that the classifiers fusion can achieve the classification accuracy of ≥ 98%.
机译:手写的数字识别已被视为机器学习上下文中的多级分类问题,其中十个数字(0-9)中的每一个被视为类,并且机器学习任务基本上培训可以有效地辨别的分类器十班。在实践中,使用标准学习算法训练的单个分类器的性能在不同的数据集上变化,这表明相同的学习算法可以在某些数据集上培训强大的分类器,而是可以在其他数据集上训练弱分类器。相同的分类器也可能在不同的测试集上显示不同的性能,特别是在考虑由于不同人的不同人的手写样式,图像实例可以高度多样化。为了解决上述问题,开发集合学习方法是非常有必要提高整体性能,并使表现在不同的数据集中更稳定。在本文中,我们提出了一种涉及从迈斯特数据集的基于CNN的特征提取和在不同特征组上训练的多个分类器的代数融合,这通过应用于使用CNN提取的原始特征集的特征选择来制备。实验结果表明,分类器融合可以达到≥98%的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号