首页> 外文期刊>Granular Computing >Learning quasi-identifiers for privacy-preserving exchanges: a rough set theory approach
【24h】

Learning quasi-identifiers for privacy-preserving exchanges: a rough set theory approach

机译:学习用于保护隐私的交流的准标识符:一种粗糙集理论方法

获取原文
获取原文并翻译 | 示例

摘要

The challenging and pervasive issue associated with information exchange is inferential disclosure. It occurs in the following three situations: (1) the exchanged data correlate with publicly available information, (2) the exchanged data comprise patterns similar to those in a sharing partner's datum, and (3) the shared data's attributes are interdependent. In this work, we provide and implement new algorithms that impede the third type of inferential attack. They rely on rough set theory to undermine the deductive route from nonsensitive to sensitive features. Our approach comprises three steps which include learning quasi-identifiers, computing a granulation of the underlying information system that maximizes the distribution of sensitive attributes in each granule, and masking the deductive route from nonsensitive to sensitive features. Our routine for learning quasi-identifiers achieves both the largest distinction and separation without an exhaustive search among tuples of features. The learned quasi-identifiers are employed to find a granulation of the information system that strikes a balance between the anonymity of quasi-identifiers and the diversity of sensitive attributes, without solving a difficult optimization problem. We employ this granulation in a strategy similar to that used in k-anonymity to de-identify private information systems.
机译:与信息交换相关的具有挑战性和普遍性的问题是推论性披露。它在以下三种情况下发生:(1)交换的数据与公开可用的信息相关;(2)交换的数据包括与共享伙伴数据中的模式相似的模式;(3)共享数据的属性相互依赖。在这项工作中,我们提供并实现了新的算法,可以阻止第三种类型的推理攻击。他们依靠粗糙集理论来破坏从非敏感特征到敏感特征的演绎路线。我们的方法包括三个步骤,其中包括学习准标识符,计算基础信息系统的粒度,以最大化每个颗粒中敏感属性的分布,以及掩盖从非敏感特征到敏感特征的演绎路线。我们的学习准标识符的例程可以实现最大的区分和分离,而无需在特征元组之间进行详尽的搜索。所学习的准标识符用于查找信息系统的粒度,该粒度在准标识符的匿名性与敏感属性的多样性之间取得平衡,而无需解决困难的优化问题。我们采用类似于k-匿名性中的策略的策略来细化个人信息系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号