首页> 外文期刊>Granular Computing >A new fuzzy learning vector quantization method for classification problems based on a granular approach
【24h】

A new fuzzy learning vector quantization method for classification problems based on a granular approach

机译:基于粒度方法的分类问题模糊学习矢量量化新方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new Fuzzy Learning Vector Quantization (FuzzLVQ) method for classification is presented. FuzzLVQ is a hybrid method based on LVQ neural networks and fuzzy systems. FuzzLVQ was implemented using modular architectures based on a granular approach, to further improve its performance in complex classification problems. The contribution of this research work is the development of the new fuzzy learning quantization method (FuzzLVQ) for classification problems, which is a hybrid method based on LVQ neural networks and fuzzy inference systems. In this work, a set of 15 experiments were performed for each presented architecture and a comparison between the classical LVQ algorithm and the new FuzzLVQ is presented. The obtained results are favorable, and the classification accuracy is slightly higher with the FuzzLVQ method. The hybridization proved to be beneficial also in other aspects of the method, such as in the training times of the neural network, and the number of cluster centers, which are reduced in respect to the classical LVQ performance. A proper optimization method could help improve the classification accuracy even more.
机译:本文提出了一种新的模糊学习矢量量化(FuzzLVQ)分类方法。 FuzzLVQ是基于LVQ神经网络和模糊系统的混合方法。 FuzzLVQ是使用基于粒度方法的模块化体系结构实现的,以进一步提高其在复杂分类问题中的性能。这项研究工作的成果是针对分类问题的新型模糊学习量化方法(FuzzLVQ)的开发,该方法是基于LVQ神经网络和模糊推理系统的混合方法。在这项工作中,针对每种提出的体系结构进行了15组实验,并对经典LVQ算法和新的FuzzLVQ进行了比较。获得的结果是令人满意的,并且使用FuzzLVQ方法的分类精度略高。事实证明,杂交在该方法的其他方面也很有用,例如在神经网络的训练时间和簇中心的数量方面,相对于传统的LVQ性能而言,杂交减少了。适当的优化方法可以帮助进一步提高分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号