首页> 外文期刊>GIScience & remote sensing >Feature selection for airborne LiDAR data filtering: a mutual information method with Parzon window optimization
【24h】

Feature selection for airborne LiDAR data filtering: a mutual information method with Parzon window optimization

机译:机载LIDAR数据过滤功能选择:具有Parzon窗口优化的互信息方法

获取原文
获取原文并翻译 | 示例

摘要

ABSTRACT Filtering is one of the key steps for Digital Elevation Model (DEM) generation from airborne Light Detection and Ranging (LiDAR) data. Machine-learning-based filters have emerged as a class of filtering algorithms in recent years. Most existing studies mainly focus on feature generation due to limited available features a point cloud possesses. More than 30 features have been described in the existing literature. But most generated features are based on geometric information of points. Several redundant and irrelevant features may not necessarily improve the filtering accuracy. Hence, this paper proposes a feature-selection method using minimal-Redundancy-Maximal-Relevance (mRMR) combined with Parzen window optimization to deal with both discrete and continuous features. An optimal/suboptimal feature subset is constructed for machine-learning filters in various landscapes. Experimental results based on AdaBoost show that height-related features, particularly height itself, are of the greatest significance in both urban and rural scenes. Moreover, different subsets can be selected from the datasets of the two landscapes by our feature-selection strategy, which increases the data relevance for describing each geographical landscape. This study provides guidelines for the selection of optimal/suboptimal features for point cloud filtering based on machine-learning algorithms.
机译:摘要过滤是从机载光检测和测距(LIDAR)数据产生数字高度模型(DEM)的关键步骤之一。基于机器学习的过滤器近年来作为一类过滤算法出现。大多数现有的研究主要关注由于可用的有限功能,主要是云层拥有的有限功能。现有文献中描述了超过30个功能。但大多数生成的功能基于点的几何信息。几种冗余和无关的特征可能不一定提高过滤精度。因此,本文提出了一种使用最小冗余 - 最大关联(MRMR)的特征选择方法与Parzen窗口优化组合,以处理离散和连续功能。为各种风景中的机器学习过滤器构建了最佳/次优特征子集。基于Adaboost的实验结果表明,与城市场景中的高度相关的特征,特别是高度本身,对城市和农村景象具有最大意义。此外,可以通过我们的特征选择策略从两个景观的数据集中选择不同的子集,这增加了用于描述每个地理景观的数据相关性。本研究提供了选择基于机器学习算法的点云过滤的最佳/次优特征的指导方针。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号