首页> 外文期刊>GIScience & remote sensing >A LiDAR signature library simulated from 3-dimensional Discrete Anisotropic Radiative Transfer (DART) model to classify fuel types using spectral matching algorithms
【24h】

A LiDAR signature library simulated from 3-dimensional Discrete Anisotropic Radiative Transfer (DART) model to classify fuel types using spectral matching algorithms

机译:从三维离散各向异性辐射传输(DART)模型模拟​​的LIDAR签名库,用于使用光谱匹配算法对燃料类型进行分类

获取原文
获取原文并翻译 | 示例

摘要

Fuel types are one of the key variables that drive wildfire ignition and propagation. A new method is proposed to automatically classify and map fuel types from LiDAR data. The 3-dimensional Discrete Anisotropic Radiative Transfer (DART) model generated a fuel type LiDAR signature library. These simulations provided reference endmembers and additional data to demonstrate the feasibility to classify fuel types using spectral matching algorithms, like multiple endmember spectral mixture analysis (MESMA) and spectral angle mapper (SAM). When choosing a single endmember per fuel type, MESMA outperformed SAM with 63.3% and 48.9% agreement, respectively. Multiple endmembers per fuel type improved the classification results to 85.3% in SAM and 86.5% in MESMA. Endmembers need to identify different scan angles that account for the variability in height and number of trees for better results. Contrary to empirical models, a fuel type LiDAR signature library provides a comprehensive suite of solutions to classify fuel types from LiDAR data that is less study site dependent and applicable to multiple sensors.
机译:燃料类型是驱动野火点火和传播的关键变量之一。提出了一种新方法来自动对LIDAR数据进行分类和地图燃料类型。三维离散各向异性辐射转移(DART)模型产生了燃料型LIDAR签名库。这些模拟提供了参考终端和附加数据,以证明使用频谱匹配算法对燃料类型进行分类的可行性,如多个终点谱混合混合分析(MESMA)和光谱角映射器(SAM)。当每种燃料类型选择单个末端时,米瑟分别优于63.3%和48.9%的达成协议。每种燃料类型的多个终点将分类结果提高至SAM的85.3%,宫颈中的86.5%。 EndMembers需要识别不同的扫描角度,该角度占树木高度和数量的变化以获得更好的结果。与经验模型相反,燃油型LIDAR签名库提供了全面的解决方案套件,以将燃料类型与较少的LIDAR数据进行分类,这些数据依赖于研究现场,适用于多个传感器。

著录项

  • 来源
    《GIScience & remote sensing》 |2019年第8期|988-1023|共36页
  • 作者单位

    Ctr Univ Def Zaragoza Acad Gen Mil Ctra Huesca S-N Zaragoza 50090 Spain|Univ Zaragoza GEOFOREST IUCA Res Grp Pedro Cerbuna 12 E-50009 Zaragoza Spain;

    Univ Calif Davis CSTARS 139 Veihmeyer Hall One Shields Ave Davis CA 95616 USA|CSIC IEGD CCHS Madrid 28037 Spain;

    Univ Calif Davis CSTARS 139 Veihmeyer Hall One Shields Ave Davis CA 95616 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    LiDAR; DART; fuel types; classification; signature library;

    机译:LIDAR;DART;燃料类型;分类;签名库;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号