首页> 外文期刊>GIScience & remote sensing >Unsupervised evaluation-based region merging for high resolution remote sensing image segmentation
【24h】

Unsupervised evaluation-based region merging for high resolution remote sensing image segmentation

机译:基于无监督评估的区域合并用于高分辨率遥感影像分割

获取原文
获取原文并翻译 | 示例

摘要

Image segmentation has a remarkable influence on the classification accuracy of object-based image analysis. Accordingly, how to raise the performance of remote sensing image segmentation is a key issue. However, this is challenging, primarily because it is difficult to avoid over-segmentation errors (OSE) and under-segmentation errors (USE). To solve this problem, this article presents a new segmentation technique by fusing a region merging method with an unsupervised segmentation evaluation technique called under- and over-segmentation aware (UOA), which is improved by using edge information. Edge information is also used to construct the merging criterion of the proposed approach. To validate the new segmentation scheme, five scenes of high resolution images acquired by Gaofen-2 and Ziyuan-3 multispectral sensors are chosen for the experiment. Quantitative evaluation metrics are employed in the experiment. Results indicate that the proposed algorithm obtains the lowest total error (TE) values for all test images (0.3791, 0.1434, 0.7601, 0.7569, 0.3169 for the first, second, third, fourth, fifth image, respectively; these values are averagely 0.1139 lower than the counterparts of the other methods), as compared to six state-of-the-art region merging-based segmentation approaches, including hybrid region merging, hierarchical segmentation, scale-variable region merging, size-constrained region merging with edge penalty, region merging guided by priority, and region merging combined with the original UOA. Moreover, the performance of the proposed method is better for artificial-object-dominant scenes than the ones mainly covering natural geo-objects.
机译:图像分割对基于对象的图像分析的分类精度有显着影响。因此,如何提高遥感图像分割的性能是一个关键问题。但是,这具有挑战性,主要是因为很难避免过度分割错误(OSE)和过度分割错误(USE)。为了解决这个问题,本文提出了一种新的分割技术,将区域合并方法与称为“欠分割和过度分割感知”(UOA)的无监督分割评估技术融合在一起,该技术可以通过使用边缘信息进行改进。边缘信息也用于构造所提出方法的合并标准。为了验证新的分割方案,选择了由高分2号和子远3号多光谱传感器获取的五个高分辨率图像场景进行实验。实验中采用了定量评估指标。结果表明,所提出的算法获得了所有测试图像的最低总误差(TE)值(第一幅,第二幅,第三幅,第四幅,第五幅图像分别为0.3791、0.1434、0.7601、0.7569、0.3169;这些值平均低0.1139与其他方法相比),与六种基于区域合并的最新分割方法相比,包括混合区域合并,分层分割,比例可变区域合并,尺寸受限区域合并边缘罚分,在优先级指导下进行区域合并,并将区域合并与原始UOA合并。此外,与主要覆盖自然地理对象的场景相比,该方法对于以人工对象为主的场景的性能更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号