首页> 外文期刊>GIScience & remote sensing >Vegetation species mapping in a coastal-dune ecosystem using high resolution satellite imagery
【24h】

Vegetation species mapping in a coastal-dune ecosystem using high resolution satellite imagery

机译:利用高分辨率卫星图像绘制沿海-沙丘生态系统中的植被物种图

获取原文
获取原文并翻译 | 示例

摘要

Vegetation mapping is a priority when managing natural protected areas. In this context, very high resolution satellite remote sensing data can be fundamental in providing accurate vegetation cartography at species level. In this work, a complete processing methodology has been developed and validated in a complex vulnerable coastal-dune ecosystem. Specifically, the analysis has been carried out using WorldView-2 imagery, which offers spatial and spectral resolutions. A thorough assessment of 5 atmospheric correction models has been performed using real reflectance measures from a field radiometry campaign. To select the classification methodology, different strategies have been evaluated, including additional spectral (23 vegetation indices) and spatial (4 texture parameters) information to the multispectral bands. Likewise, the application of linear unmixing techniques has been tested and abundance maps of each plant species have been generated using the library of spectral signatures recorded during the campaign. After the analysis conducted, a new methodology has been proposed based on the use of the 6S atmospheric model and the Support Vector Machine classification algorithm applied to a combination of different spectral and spatial input data. Specifically, an overall accuracy of 88,03% was achieved combining the corrected multispectral bands plus a vegetation index (MSAVI2) and texture information (variance of the first principal component). Furthermore, the methodology has been validated by photointerpretation and 3 plant species achieve significant accuracy: Tamarix canariensis (94,9%), Juncus acutus (85,7%) and Launaea arborescens (62,4%). Finally, the classified procedure comparing maps for different seasons has also shown robustness to changes in the phenological state of the vegetation.
机译:在管理自然保护区时,植被映射是优先事项。在这种情况下,非常高分辨率的卫星遥感数据对于提供物种一级的准确植被制图至关重要。在这项工作中,已经开发了完整的处理方法,并在复杂的脆弱沿海沙丘生态系统中得到了验证。具体来说,已使用提供空间和光谱分辨率的WorldView-2影像进行了分析。使用现场辐射测量活动的真实反射率措施对5个大气校正模型进行了全面评估。为了选择分类方法,已经对不同的策略进行了评估,包括对多光谱波段的附加光谱(23个植被指数)和空间(4个纹理参数)信息。同样,已经测试了线性解混技术的应用,并使用了运动期间记录的光谱特征库生成了每种植物的丰度图。在进行了分析之后,基于6S大气模型和支持向量机分类算法的使用,提出了一种新的方法,该算法应用于不同光谱和空间输入数据的组合。具体而言,将校正后的多光谱带加上植被指数(MSAVI2)和纹理信息(第一主成分的变化)相结合,可获得88.03%的整体精度。此外,该方法已通过照片解释得到验证,并且3种植物达到了显着的准确度:加拿大Ta柳(94,9%),尖吻杜鹃(85.7%)和欧亚月桂(62,4%)。最后,分类程序比较不同季节的地图还显示出对植被物候状态变化的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号