首页> 外文期刊>GIScience & remote sensing >Assessing Optimal Image Fusion Methods for Very High Spatial Resolution Satellite Images to Support Coastal Monitoring
【24h】

Assessing Optimal Image Fusion Methods for Very High Spatial Resolution Satellite Images to Support Coastal Monitoring

机译:评估超高分辨率卫星图像的最佳图像融合方法以支持海岸监测

获取原文
获取原文并翻译 | 示例

摘要

This study examines best image fusion approaches for generating pan sharpened very high resolution (VHR) multispectral images to be utilized for moni toring coastal barrier island development. Selected fusion techniques assessed in this research come from the three categories of spectral substitution (e.g., Brovey transform and multiplicative merging), arithmetic merging (e.g., modified intensity hue-saturation and principal component analysis), and spatial domain (e.g., high-pass filter, and subtractive resolution merge). The image fusion methods selected for this study were capable of producing pansharpened VHR images with more than three bands. Comparisons of fusion techniques were applied to images from three satel lite sensors: United States commercial satellites IKONOS and QuickBird, and the Korean KOMPSAT II. Pansharpened VHR multispectral images were assessed by spectral and spatial quality measurements. Results satisfying both spectral and spatial quality revealed optimum pansharpened techniques necessary for regular coastal mapping of barrier islands. These techniques may also be used to assess the quality of recently available VHR imagery acquired by numerous international, government, and commercial VHR satellite programs.
机译:这项研究探讨了生成泛锐化的超高分辨率(VHR)多光谱图像的最佳图像融合方法,以用于监测沿海屏障岛的发展。在这项研究中评估的选定融合技术来自以下三种类别:光谱替换(例如,Brovey变换和乘法合并),算术合并(例如,修改后的强度色相饱和度和主成分分析)和空间域(例如,高通过滤器和减法分辨率合并)。为这项研究选择的图像融合方法能够产生超过三个波段的全锐化VHR图像。融合技术的比较应用于来自三颗卫星传感器的图像:美国商业卫星IKONOS和QuickBird,以及韩国KOMPSAT II。 Pansharpened VHR多光谱图像通过光谱和空间质量测量进行评估。同时满足光谱和空间质量的结果表明,对障碍岛进行定期沿海测绘必须采用最佳的全锐化技术。这些技术还可用于评估由众多国际,政府和商业VHR卫星计划获取的最新可用VHR图像的质量。

著录项

  • 来源
    《GIScience & remote sensing》 |2012年第5期|p.687-710|共24页
  • 作者单位

    Department of Geography, Environment, and Planning,University of South Florida, Tampa, Florida 33620;

    Department of Geography, Sangmyung University 7 Hongji-dong, Jongno-gu, Seoul, Republic of Korea 110-743;

    Center for Remote Sensing and Mapping Science (CRMS),Department of Geography, University of Georgia, Athens, Georgia 30602;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号