首页> 外文期刊>GIScience & remote sensing >Storage and processing of massive remote sensing images using a novel cloud computing platform
【24h】

Storage and processing of massive remote sensing images using a novel cloud computing platform

机译:使用新型云计算平台存储和处理海量遥感影像

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the rapid development of remote sensing technology has proliferated high-quality images that occupy larger and larger storage spaces. Video has become widespread for environmental observation. Hence, digital data is growing exponentially, and geographic information systems must determine how to manage and process images and video effectively. Researchers cannot limit themselves to desktop PCs due to computational and storage limits. The aim of this article was to propose and implement an architectural design for a novel cloud computing platform based on two Web Coverage Service and Web Map Service interfaces from the Open Geospatial Consortium (OGC), cloud storage from Hadoop Distributed File System (HDFS), and image processing from MapReduce. Results are presented on tablet computers (Asus transformer pad) and websites. Within this framework, we implemented image management as well as simple WebGIS and created an experiment in read/write performance with four kinds of data sets (normal distribution, skew to left, skew to right, and peak in left and right). For write/read performance with HDFS, the proposed system outperformed a local file system for large files (most files ranged from 8 MB to 10 MB), with many concurrent users (simulated threads equal to 40 or 50). An observer on the ground with a touchscreen can identify central points (man-made centroids) of real-time images by tapping the tablet with a finger. A second experiment revealed that the convergence for human intervention was better than convergence for random centroids in two kinds of cloud computing environments.
机译:近年来,遥感技术的飞速发展激增了占据越来越大存储空间的高质量图像。视频已广泛用于环境观察。因此,数字数据呈指数增长,并且地理信息系统必须确定如何有效地管理和处理图像和视频。由于计算和存储限制,研究人员不能将自己限制在台式PC上。本文的目的是基于来自开放地理空间联盟(OGC)的两个Web Coverage Service和Web Map Service接口,来自Hadoop分布式文件系统(HDFS)的云存储,和MapReduce中的图像处理。结果显示在平板电脑(Asus变压器垫)和网站上。在此框架内,我们实现了图像管理以及简单的WebGIS,并使用四种数据集(正态分布,向左偏斜,向右偏斜和左右峰值)创建了读写性能实验。为了使用HDFS进行写入/读取,对于大型文件(大多数文件的大小在8 MB到10 MB之间),并且有许多并发用户(模拟线程数等于40或50),建议的系统优于本地文件系统。带有触摸屏的地面观察者可以通过用手指敲击平板电脑来识别实时图像的中心点(人造质心)。第二个实验表明,在两种云计算环境中,人为干预的收敛性优于随机质心的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号