首页> 外文期刊>GIScience & remote sensing >Wetland classification in Newfoundland and Labrador using multi-source SAR and optical data integration
【24h】

Wetland classification in Newfoundland and Labrador using multi-source SAR and optical data integration

机译:使用多源SAR和光学数据集成的纽芬兰和拉布拉多湿地分类

获取原文
获取原文并翻译 | 示例

摘要

A vast portion of Newfoundland and Labrador (NL) is covered by wetland areas. Notably, it is the only province in Atlantic Canada that does not have a wetland inventory system. Wetlands are important areas of research because they play a pivotal role in ecological conservation and impact human activities in the province. Therefore, classifying wetland types and monitoring their changes are crucial tasks recommended for the province. In this study, wetlands in five pilot sites, distributed across NL, were classified using the integration of aerial imagery, Synthetic Aperture Radar, and optical satellite data. First, each study area was segmented using the object-based method, and then various spectral and polarimetric features were evaluated to select the best features for identifying wetland classes using the Random Forest algorithm. The accuracies of the classifications were assessed by the parameters obtained from confusion matrices, and the overall accuracies varied between 81% and 91%. Moreover, the average producer and user accuracies for wetland classes, considering all pilot sites, were 71% and 72%, respectively. Since the proposed methodology demonstrated high accuracies for wetland classification in different study areas with various ecological characteristics, the application of future classifications in other areas of interest is promising.
机译:纽芬兰和拉布拉多(NL)的大部分地区被湿地覆盖。值得注意的是,它是加拿大大西洋地区唯一没有湿地清单系统的省。湿地是重要的研究领域,因为它们在生态保护和影响该省人类活动方面发挥着关键作用。因此,对湿地类型进行分类并监测其变化是该省建议的关键任务。在这项研究中,使用航空影像,合成孔径雷达和光学卫星数据的集成对五个分布在整个NL的试点的湿地进行了分类。首先,使用基于对象的方法对每个研究区域进行分割,然后使用随机森林算法对各种光谱和极化特征进行评估,以选择最佳特征来识别湿地类别。通过从混淆矩阵获得的参数评估分类的准确性,总体准确性在81%到91%之间变化。此外,考虑到所有试点,湿地类别的平均生产者和使用者准确度分别为71%和72%。由于所提出的方法论在具有不同生态特征的不同研究区域中对湿地分类具有很高的准确性,因此未来分类法在其他感兴趣的领域中的应用是有希望的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号