首页> 外文期刊>GIScience & remote sensing >Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework
【24h】

Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework

机译:遥感场景分类中的深度学习:数据增强增强卷积神经网络框架

获取原文
获取原文并翻译 | 示例

摘要

The recent emergence of deep learning for characterizing complex patterns in remote sensing imagery reveals its high potential to address some classic challenges in this domain, e.g. scene classification. Typical deep learning models require extremely large datasets with rich contents to train a multilayer structure in order to capture the essential features of scenes. Compared with the benchmark datasets used in popular deep learning frameworks, however, the volumes of available remote sensing datasets are particularly limited, which have restricted deep learning methods from achieving full performance gains. In order to address this fundamental problem, this article introduces a methodology to not only enhance the volume and completeness of training data for any remote sensing datasets, but also exploit the enhanced datasets to train a deep convolutional neural network that achieves state-of-the-art scene classification performance. Specifically, we propose to enhance any original dataset by applying three operations - flip, translation, and rotation to generate augmented data - and use the augmented dataset to train and obtain a more descriptive deep model. The proposed methodology is validated in three recently released remote sensing datasets, and confirmed as an effective technique that significantly contributes to potentially revolutionary changes in remote sensing scene classification, empowered by deep learning.
机译:深度学习用于表征遥感影像中复杂模式的最新成果表明,它具有解决这一领域中一些经典挑战的巨大潜力。场景分类。典型的深度学习模型需要具有丰富内容的超大型数据集来训练多层结构,以捕获场景的基本特征。但是,与流行的深度学习框架中使用的基准数据集相比,可用的遥感数据集的数量特别有限,这限制了深度学习方法无法获得完整的性能提升。为了解决这个基本问题,本文介绍了一种方法,该方法不仅可以增强任何遥感数据集的训练数据的数量和完整性,而且可以利用增强的数据集来训练可实现最新状态的深度卷积神经网络。艺术场景分类表现。具体来说,我们建议通过应用三个操作(翻转,平移和旋转以生成增强数据)来增强任何原始数据集,并使用增强数据集来训练并获得更具描述性的深度模型。所提出的方法已在最近发布的三个遥感数据集中得到了验证,并被确认为有效的技术,该技术极大地促进了由深度学习支持的遥感场景分类的潜在革命性变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号