首页> 外文期刊>Generation, Transmission & Distribution, IET >Proximity effect modelling for cables of finite length using the hybrid partial element equivalent circuit and artificial neural network method
【24h】

Proximity effect modelling for cables of finite length using the hybrid partial element equivalent circuit and artificial neural network method

机译:混合局部等效电路与人工神经网络的有限长电缆近似效应建模。

获取原文
获取原文并翻译 | 示例

摘要

This study presents an efficient method for modelling the proximity effect in complex conductor systems. This method is based on a discretisation partial element equivalent circuit (DPEEC) scheme in combination with artificial neural network (ANN). Circuit parameters of a conductor system are obtained with DPEEC at low frequency. ANN trained with the low-frequency parameters is employed to predict proximity effect at high frequencies. The proposed method significantly improves the calculation efficiency in both time and memory consuming. The method is validated by comparing with the result obtained by MoM-SO. Case studies of closely-spaced cables with different configurations are analysed. It is applied to evaluate the lightning current in typical cable installations. The comparison among different configurations reveals that the proximity effect leads to uneven current distribution in cables. Cable modelling without considering the proximity effect could lead to significant errors in transient current analysis.
机译:这项研究提出了一种有效的方法来建模复杂导体系统中的邻近效应。该方法基于结合人工神经网络(ANN)的离散化局部元素等效电路(DPEEC)方案。导体系统的电路参数是通过DPEEC低频获得的。经过低频参数训练的神经网络被用来预测高频下的邻近效应。所提出的方法显着提高了时间和内存消耗的计算效率。通过与MoM-SO获得的结果进行比较,验证了该方法的有效性。分析了不同配置的近距离电缆的案例研究。它用于评估典型电缆安装中的雷电流。不同配置之间的比较表明,邻近效应会导致电缆中的电流分布不均匀。在不考虑邻近效应的情况下进行电缆建模可能会导致瞬态电流分析中的重大误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号