首页> 外文期刊>Fuzzy sets and systems >Exponentially stabilizing fuzzy controller design for a nonlinear ODE-beam cascaded system and its application to flexible air-breathing hypersonic vehicle
【24h】

Exponentially stabilizing fuzzy controller design for a nonlinear ODE-beam cascaded system and its application to flexible air-breathing hypersonic vehicle

机译:非线性ODE-Beam级联系统的指数稳定模糊控制器设计及其在柔性吸气超音速飞行器中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses fuzzy control design for a class of nonlinear systems which are described by nonlinear ordinary differential equations (ODEs) cascaded with an Euler-Bernoulli beam (EBB) equation. Two design difficulties are involved in the control design addressed in this paper. The first one is caused by the EBB equation whose spatiotemporal dynamics is affected by the output of the nonlinear ODE subsystem through its differential equation rather than boundary conditions. A state differential transformation is introduced for the EBB equation to bring the output of the ODE subsystem in the differential equation to its boundary conditions. The second one comes from the nonlinear ODE subsystem. To overcome this difficulty, it is assumed that an exact Takagi-Sugeno (T-S) fuzzy ODE model is utilized by the sector nonlinearity approach to describe the dynamics of nonlinear ODE subsystem. Based on the T-S fuzzy model, a composite Lyapunov function is constructed to develop a fuzzy controller via the ODE state feedback and boundary feedback of transformed EBB equation to exponentially stabilize the nonlinear ODE-EBB cascaded system. The design procedure is presented in terms of bilinear matrix inequalities (BMIs). Moreover, a simple design method is also provided in terms of linear matrix inequalities (LMIs) from the obtained design procedure. Finally, numerical simulations on flight control with vibration suppression of a flexible air-breathing hypersonic vehicle are given to illustrate the effectiveness of the proposed design method. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文讨论了一类非线性系统的模糊控制设计,该系统由与Euler-Bernoulli梁(EBB)方程级联的非线性常微分方程(ODE)描述。本文解决的控制设计涉及两个设计难题。第一个是由EBB方程引起的,该EBB方程的时空动力学受非线性ODE子系统通过其微分方程而不是边界条件的输出影响。为EBB方程引入了状态微分变换,以使微分方程中的ODE子系统的输出达到其边界条件。第二个来自非线性ODE子系统。为了克服这个困难,假设扇区非线性方法利用精确的Takagi-Sugeno(T-S)模糊ODE模型来描述非线性ODE子系统的动力学。基于T-S模糊模型,构造了复合Lyapunov函数,通过ODE状态反馈和变换后的EBB方程的边界反馈来开发模糊控制器,以指数方式稳定非线性ODE-EBB级联系统。根据双线性矩阵不等式(BMI)提出了设计过程。此外,根据获得的设计过程中的线性矩阵不等式(LMI),还提供了一种简单的设计方法。最后,对柔性呼吸高超声速飞行器的振动抑制飞行控制进行了数值模拟,以说明所提出的设计方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号