首页> 外文期刊>Fuzzy sets and systems >Residuated EQ-algebras may not be residuated lattices
【24h】

Residuated EQ-algebras may not be residuated lattices

机译:剩余的EQ代数可能不是剩余的点阵

获取原文
获取原文并翻译 | 示例

摘要

This paper aims to solve the question "whether there is a residuated EQ-algebra, which is not a residuated lattice?" In this paper, we first introduce the notion of residuated meet semilattice monoids and research some properties of them. We discuss the relations between residuated meet semilattice monoids and residuated lattices, and prove that every complete (or prelinear) residuated meet semilattice monoid is a residuated lattice. Especially, we construct a residuated meet semilattice monoid, which has no lattice structure. Furthermore, we discuss the relations between residuated meet semilattice monoids and residuated EQ-algebras. Finally by use of residuated meet semilattice monoids, we give a theorem to show that there are some residuated EQ-algebras, but they are not residuated lattices. We also give an example, which satisfies the conditions of the above theorem, and hence it is a residuated EQ-algebra but it is not a residuated lattice. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文旨在解决以下问题:“是否存在剩余的EQ代数,而不是剩余的晶格?”在本文中,我们首先介绍了残差相符合半格点半定式的概念,并研究了它们的一些性质。我们讨论了残差满足半格mono半群和残格之间的关系,并证明了每个完整(或预线性)残差满足半格mono半群都是残格。尤其是,我们构造了一个没有格结构的残差满足半格lat半体。此外,我们讨论了残差的满足半格半形体和残差的EQ代数之间的关系。最后,通过使用残差的满足半格点半定理,给出一个定理,表明存在一些残差的EQ-代数,但它们不是残差的格。我们还给出一个满足上述定理条件的示例,因此它是一个剩余的EQ代数,但不是一个剩余的格。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号