首页> 外文期刊>Fuzzy sets and systems >A novel identification method for Takagi-Sugeno fuzzy model
【24h】

A novel identification method for Takagi-Sugeno fuzzy model

机译:Takagi-Sugeno模糊模型的一种新的辨识方法

获取原文
获取原文并翻译 | 示例

摘要

Based on the Xie-Beni index and an improved particle swarm optimization algorithm, a novel identification method for the Takagi-Sugeno fuzzy model is proposed in this paper. Firstly, Xie-Beni indices with a fuzzy c-means clustering algorithm are adopted to find the rule number of the Takagi-Sugeno fuzzy model. By utilizing the particle swarm optimization algorithm, the initial membership function and the consequent parameters of the fuzzy model are obtained. In addition, through an improved fuzzy c-regression model and orthogonal least-square method, the premise structure and consequent parameters can be obtained to establish the Takagi-Sugeno fuzzy model. Some well-known models are used to demonstrate that the proposed method outperforms some existing methods. (C) 2017 Elsevier B.V. All rights reserved.
机译:基于Xie-Beni指数和改进的粒子群算法,提出了一种新的Takagi-Sugeno模糊模型辨识方法。首先,采用具有模糊c-均值聚类算法的Xie-Beni指数来找到高木-杉野模糊模型的规则编号。利用粒子群算法,得到了模糊模型的初始隶属度函数和参数。另外,通过改进的模糊c-回归模型和正交最小二乘法,可以得到前提结构和相关参数,从而建立了Takagi-Sugeno模糊模型。使用一些众所周知的模型来证明所提出的方法优于某些现有方法。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号