首页> 外文期刊>Fuzzy sets and systems >Clustering of fuzzy data and simultaneous feature selection: A model selection approach
【24h】

Clustering of fuzzy data and simultaneous feature selection: A model selection approach

机译:模糊数据聚类和同时特征选择:一种模型选择方法

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy data occurs frequently in the fields of decision making, social sciences, and control theory. We consider the problem of clustering fuzzy data along with automatic component number detection and feature selection. A model selection criterion called minimum message length is used to address the problem of component number selection. The Bayesian framework can be adopted here, by applying an explicit prior distribution over the parameter values. We discuss both uninformative and informative priors. For the latter, a gradient descent algorithm for automatic optimization of the prior hyper-parameters is presented. The problem of simultaneous feature selection involves ordering the discriminative features according to their relative importance, and at the same time eliminating non-discriminative features. The feature selection problem is also formulated as a parameter estimation problem by extending the concept of feature saliency. Then the estimation can be computed simultaneously with the clustering steps. By combining the clustering, the cluster number detection and the feature selection into one estimation problem, we modified the fuzzy Expectation-Maximization (EM) algorithm to perform all of the estimation. Evaluation criteria are proposed and empirical study results are reported to showcase the efficacy of our proposals. (C) 2017 Elsevier B.V. All rights reserved.
机译:模糊数据经常出现在决策,社会科学和控制理论领域。我们考虑将模糊数据聚类以及自动进行组件编号检测和特征选择的问题。一种称为最小消息长度的模型选择标准用于解决组件编号选择的问题。通过在参数值上应用显式的先验分布,可以采用贝叶斯框架。我们讨论了无先验信息和先验信息。对于后者,提出了一种用于自动优化现有超参数的梯度下降算法。同时进行特征选择的问题涉及根据区分特征的相对重要性对区分特征进行排序,同时消除非区分特征。通过扩展特征显着性的概念,将特征选择问题也表述为参数估计问题。然后,可以与聚类步骤同时计算估计。通过将聚类,聚类数检测和特征选择组合到一个估计问题中,我们修改了模糊期望最大化(EM)算法以执行所有估计。提出了评估标准,并报告了实证研究结果,以展示我们提议的有效性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号