首页> 外文期刊>Fuzzy sets and systems >Soft computing based techniques for short-tem load forecasting
【24h】

Soft computing based techniques for short-tem load forecasting

机译:基于软计算的短期负荷预测技术

获取原文
获取原文并翻译 | 示例

摘要

Neural networks are currently finding practical applications, ranging form 'soft' regulatory control in consumer products to accurate modelling of non-linear systems. This paper presents the development of improved neural networks based short-term electric load forecasting models for the power system of the Greek Island of Crete. Several approaches including radial basis function networks, dynamic neural networks have been considered. In addition, a novel approach, based on neural-fuzzy approach has been proposed and discussed in this paper.
机译:神经网络目前正在寻找实际应用,范围从消费产品中的“软”监管控制到非线性系统的精确建模。本文介绍了基于改进的神经网络的克里特岛希腊电力系统短期电力负荷预测模型的开发。已经考虑了几种方法,包括径向基函数网络,动态神经网络。此外,本文还提出并讨论了一种基于神经模糊方法的新颖方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号