首页> 外文期刊>Fuzzy sets and systems >Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations
【24h】

Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations

机译:模糊数值函数微分的推广及其在模糊微分方程中的应用

获取原文
获取原文并翻译 | 示例

摘要

The usual concept of differentiability of fuzzy-number-valued functions, has the following shortcoming: if c is a fuzzy number and g : [a, b] → R is an usual real-valued function differentiable on x_0 ∈ (a, b) with g′ (x_0) ≤ 0, then f (x) = c ☉ g(x) is not differentiable on x_0. In this paper we introduce and study generalized concepts of differentiability (of any order n ∈ N), which solves this shortcoming. Newton-Leibnitz-type formula is obtained and existence of the solutions of fuzzy differential equations involving generalized differentiability is studied. Also, some concrete applications to partial and ordinary fuzzy differential equations with fuzzy input data of the form c ☉ g(x), are given.
机译:模糊数值函数的可微性的通常概念具有以下缺点:如果c是模糊数而g:[a,b]→R是可在x_0∈(a,b)上微分的通常实值函数。当g'(x_0)≤0时,则f(x)= c☉g(x)在x_0上不可微。在本文中,我们介绍并研究了可微化(任何阶数n∈N)的广义概念,从而解决了该缺陷。得到了牛顿-莱布尼茨型公式,研究了涉及广义可微性的模糊微分方程解的存在性。此外,还给出了对模糊输入数据为c☉g(x)形式的偏微分方程和普通模糊微分方程的一些具体应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号