首页> 外文期刊>Fuzzy sets and systems >A fuzzy clustering approach to real-time demand-responsive bus dispatching control
【24h】

A fuzzy clustering approach to real-time demand-responsive bus dispatching control

机译:实时需求响应公交调度控制的模糊聚类方法

获取原文
获取原文并翻译 | 示例

摘要

Quick response (QR) to passenger needs is a key objective for advanced public transportation systems (APTS), and it has become increasingly important for contemporary metropolitan bus operations to gain a competitive advantage over private transportation. This paper presents a real-time control methodology for demand-responsive bus operations that respond quickly to passenger needs. The proposed method primarily involves two levels of functionality: (1) short-term forecasting of passenger demands using time-series prediction models, and (2) identification of service strategies coupled with the associated bus service segments using fuzzy clustering technologies in response to variances in passenger demand attributes and traffic conditions. The proposed bus operations method identifies the demand-responsive vehicle service strategies primarily according to the predicted up-to-date attributes of passengers' demands, rather than deterministic passenger arrival rates, which were generally used in previous literature. In addition, the variation of traffic conditions along bus lines is considered in the proposed method. Results from numerical studies using real data of passengers' demands, including passenger volume at each bus stop and the passenger origin-destination (O-D) patterns, are presented to demonstrate the effectiveness of the proposed method for real-world applications.
机译:对乘客需求的快速响应(QR)是高级公共交通系统(APTS)的主要目标,对于当代大都市公交运营而言,获得比私营交通更具竞争优势的地位已变得越来越重要。本文提出了一种对需求响应公交运营的实时控制方法,可以快速响应乘客的需求。所提出的方法主要涉及两个功能级别:(1)使用时间序列预测模型对乘客需求进行短期预测,以及(2)使用模糊聚类技术响应方差来识别服务策略以及相关的公交服务段乘客需求属性和交通状况。拟议的公交运营方法主要根据乘客需求的最新预测属性,而不是先前文献中通常使用的确定性乘客到达率,来确定需求响应车辆服务策略。另外,在该方法中考虑了沿公交线路的交通状况的变化。提出了使用乘客需求的实际数据进行数值研究的结果,其中包括每个公交车站的乘客数量和乘客始发地(O-D)模式,以证明该方法在实际应用中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号