首页> 外文期刊>Fuzzy sets and systems >Meta-theorems on inequalities for scalar fuzzy set cardinalities
【24h】

Meta-theorems on inequalities for scalar fuzzy set cardinalities

机译:标量模糊集基数不等式的元定理

获取原文
获取原文并翻译 | 示例

摘要

We present meta-theorems stating general conditions ensuring that certain inequalities for cardinalities of ordinary sets are preserved under fuzzification, when adopting a scalar approach to fuzzy set cardinality. The conditions pertain to the commutative conjunctor used for modelling fuzzy set intersection. In particular, this conjunctor should fulfil a number of Bell-type inequalities. The advantage of these meta-theorems is that repetitious calculations can be avoided. This is illustrated in the demonstration of the Lukasiewicz transitivity of fuzzified versions of the simple matching coefficient and the Jaccard coefficient, or equivalently, the triangle inequality of the corresponding dissimilarity measures.
机译:我们提出了陈述一般条件的元定理,当采用标量方法模糊集基数时,确保在模糊化条件下保留普通集基数的某些不等式。这些条件属于用于对模糊集相交进行建模的可交换结点。尤其是,该连接器应满足许多Bell型不等式。这些元定理的优点是可以避免重复的计算。在简单匹配系数和雅卡德系数的模糊化形式的Lukasiewicz传递性的演示中,或等效地,在相应的相异性度量的三角形不等式中,对此进行了说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号