首页> 外文期刊>Fuzzy sets and systems >Application of hybrid system control method for real-time power system stabilization
【24h】

Application of hybrid system control method for real-time power system stabilization

机译:混合系统控制方法在电力系统实时稳定中的应用

获取原文
获取原文并翻译 | 示例

摘要

The electrical energy has become the major form of energy for end use consumption in today's world. There is always a need of making electric energy generation more economic and reliable. For proper operation, this large integrated system requires a stable operating condition. The power system is a dynamic system. It is constantly being subjected to small disturbances, which cause the generators relative angles to change [A.R. Messina, et al., An investigation on the use of power system stabilizers for damping inter-area oscillations in longitudinal power systems, IEEE Trans. Power Systems 13(2) (1997)]. For the interconnected system to be able to supply the load power demand when the transients caused by disturbance die out, a new acceptable steady state operating condition is reached [A. Soos, An optimal adaptive power system stabilizer, Ph.D. Thesis, University of Calgary, October 1997]. It is important that these disturbances do not drive the system to an unstable condition. The small signal stability problem is associated with modes of oscillations affecting either a single machine (local modes) or a small group of relatively closely connected machines or inter-area (global modes). This problem has got a very high attention in the last three decades and many types of controllers depend on classical and modern control theory have been developed by designing supplementary control signals to improve system damping [A.R. Messina, et al., An investigation on the use of power system stabilizers for damping inter-area oscillations in longitudinal power systems, IEEE Trans. Power Systems 13(2) (1997)]. In this research a novel power system stabilizer for damping both local and global modes of an interconnected system based on neuro fuzzy (hybrid) system is developed. NN-MISO (neural network multiple input single output) is proposed for local modes and Takagi-Sugneo's neuro-fuzzy system is proposed for global modes control [A. Soos, An optimal adaptive power system stabilizer, Ph.D. Thesis, University of Calgary, October 1997]. A comparative study between the proposed controller and most of widely used types of controllers (i.e. optimal controller and lead-lag stabilizer) are made towards damping electromechanical modes of oscillations. The results proved the potency of hybrid controller for power system stability control [D. Chakraborty, N.R. Pal, Integrated feature analysis and fuzzy rule-based system identification in a neuro-fuzzy paradigm, IEEE Trans. Systems Man Cybernet. 31(3) (2001) 391-400].
机译:电能已成为当今世界最终用途消耗能源的主要形式。始终需要使电能的产生更加经济和可靠。为了正常运行,此大型集成系统需要稳定的运行条件。电力系统是动态系统。它不断受到小的干扰,这会导致发电机的相对角度发生变化[A.R. Messina等人,《在纵向电力系统中使用电力系统稳定器来衰减区域间振荡的研究》,IEEE Trans。 Power Systems 13(2)(1997)]。为了使互连系统在由干扰引起的瞬变消失时能够满足负载功率需求,达到了新的可接受的稳态工作条件[A. Soos,最佳自适应电源系统稳定器,博士学位。论文,卡尔加里大学,1997年10月]。重要的是,这些干扰不要将系统驱动到不稳定状态。小信号稳定性问题与影响单个机器(本地模式)或影响相对紧密连接的机器或区域间(全局模式)的一小组振荡的模式有关。在过去的三十年中,这个问题引起了人们的高度关注,通过设计辅助控制信号来改善系统阻尼,已经开发了许多类型的控制器,它们依赖于经典和现代控制理论。 Messina等人,《在纵向电力系统中使用电力系统稳定器来衰减区域间振荡的研究》,IEEE Trans。 Power Systems 13(2)(1997)]。在这项研究中,基于神经模糊(混合)系统的新型电力系统稳定器可用于阻尼互连系统的局部和全局模式。提出了针对局部模式的NN-MISO(神经网络多输入单输出)和针对全局模式控制的Takagi-Sugneo的神经模糊系统[A. Soos,最佳自适应电源系统稳定器,博士学位。论文,卡尔加里大学,1997年10月]。提出的控制器与大多数广泛使用的控制器类型(即最佳控制器和超前滞后稳定器)之间的比较研究是针对阻尼的机电振荡模式。结果证明了混合控制器对于电力系统稳定控制的有效性[D. Chakraborty,N.R. Pal,神经模糊范例IEEE Trans中的集成特征分析和基于模糊规则的系统识别。系统人Cyber​​net。 31(3)(2001)391-400]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号