首页> 外文期刊>Fuzzy sets and systems >Fuzzy sets and sheaves. Part Ⅱ: Sheaf-theoretic foundations of fuzzy set theory with applications to algebra and topology
【24h】

Fuzzy sets and sheaves. Part Ⅱ: Sheaf-theoretic foundations of fuzzy set theory with applications to algebra and topology

机译:模糊集和滑轮。第二部分:模糊集理论的Sheaf理论基础及其在代数和拓扑中的应用

获取原文
获取原文并翻译 | 示例

摘要

This essay shows that large parts of fuzzy set theory are actually subfields of sheaf theory, resp. of the theory of complete Ω-valued sets. Hence fuzzy set theory is closer to the mainstream in mathematics than many people would expect. Part Ⅱ of this series of two papers explains the sheaf-theoretic basis of Zadeh's operations on fuzzy sets (with the exception of the complementation). Further, the quotient problem w.r.t. similarity relations and the quotient problem of fuzzy groups w.r.t. fuzzy congruence relations are solved. Finally, stratified fuzzy topologies are identified with internal topologies on constant sheaves.
机译:本文表明,模糊集理论的大部分实际上是捆理论的子领域。完全Ω值集的理论。因此,模糊集理论比许多人期望的更接近于数学的主流。这一系列两篇论文的第二部分解释了Zadeh在模糊集上的运算的理论基础(补余除外)。此外,商问题w.r.t.相似关系与模糊群商问题模糊同余关系得到解决。最后,分层的模糊拓扑通过恒定槽轮上的内部拓扑来识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号