首页> 外文期刊>Fuzzy sets and systems >Logic-based fuzzy networks: A study in system modeling with triangular norms and uninorms
【24h】

Logic-based fuzzy networks: A study in system modeling with triangular norms and uninorms

机译:基于逻辑的模糊网络:具有三角范数和单数的系统建模研究

获取原文
获取原文并翻译 | 示例

摘要

The ultimate challenges of system modeling concern designing accurate yet highly transparent and user-centric models. We have witnessed a plethora of neurofuzzy architectures which are aimed at addressing these two highly conflicting requirements. This study is concerned with the design and the development of transparent logic networks realized with the aid of fuzzy neurons and fuzzy unineurons. The construction of networks of this form requires a formation of efficient interfaces that constitute a conceptually appealing bridge between the model and the real-world experimental environment in which the model is to be used. In general, the interfaces are constructed by invoking some form of granulation of information; and binary (Boolean) discretization, in particular. We introduce a new discretization environment that is realized by means of particle swarm optimization (PSO) and data clustering implemented by the K-Means algorithm. The underlying structure of the network is optimized by invoking a combination of the PSO and the mechanisms of conventional gradient-based learning. We discuss various optimization strategies by considering Boolean as well as fuzzy data coming as the result of discretization of original experimental data and then involving several learning strategies. We elaborate on the interpretation aspects of the network and show how those could be strengthened through efficient pruning. We also show how the interpreted network leads to a simpler and more accurate logic description of the experimental data. A number of experimental studies are included.
机译:系统建模的最终挑战涉及设计准确但高度透明且以用户为中心的模型。我们目睹了众多的神经模糊架构,旨在解决这两个高度矛盾的需求。这项研究涉及借助模糊神经元和模糊神经元实现的透明逻辑网络的设计和开发。这种形式的网络的构建要求形成有效的接口,这些接口构成了模型与要在其中使用该模型的实际实验环境之间在概念上具有吸引力的桥梁。通常,接口是通过调用某种形式的信息粒度来构造的。特别是二进制(布尔)离散化。我们介绍了一种新的离散化环境,该环境通过粒子群优化(PSO)和由K-Means算法实现的数据聚类来实现。通过调用PSO和传统的基于梯度的学习机制的组合,可以优化网络的基础结构。我们通过考虑布尔值以及模糊数据作为原始实验数据离散化的结果来讨论各种优化策略,然后涉及几种学习策略。我们将详细介绍网络的解释方面,并说明如何通过有效的修剪来增强这些解释。我们还展示了解释后的网络如何导致对实验数据进行更简单,更准确的逻辑描述。包括许多实验研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号