首页> 外文期刊>Fuzzy sets and systems >On the distributivity of fuzzy implications over representable uninorms
【24h】

On the distributivity of fuzzy implications over representable uninorms

机译:关于可表示单项模糊蕴涵的分布

获取原文
获取原文并翻译 | 示例

摘要

Recently, many works have appeared dealing with the distributivity of fuzzy implications over t-norms. t-conorms and uninorms. These equations have a very important role to play in efficient inferencing in approximate reasoning, especially fuzzy control systems. In this work we deal with the following two distributive equations I(x, U_1(y,z)) = U_2(I(x, v), I(x, z))and I(U_1(x, y), z)= U_2(I(x, z), I(y, z)), where U_1, U_2 are given representable uninorms and I is an unknown function, in particular a fuzzy implication. Using the obtained characterizations we show that the first equation does not hold when U_1,U_2 are both representable uninorms and / is a continuous fuzzy implication. Therefore, we present solutions of the first equation which are fuzzy implications with continuous vertical sections. For the second equation the situation is quite different-when U_1, U_2 are both representable uninorms, then there are no solutions which are fuzzy implications. As a byproduct result we have obtained solutions of the additive Cauchy functional equation for an unknown function f: [-∞, ∞] → [-∞, ∞] with different meaning of additions ∞ + (-∞) and (-∞) + ∞.
机译:最近,出现了许多关于t范数上模糊含意的分布的著作。 t-conorms和uninorms。这些方程式在近似推理(尤其是模糊控制系统)的有效推理中具有非常重要的作用。在这项工作中,我们处理以下两个分布方程I(x,U_1(y,z))= U_2(I(x,v),I(x,z))和I(U_1(x,y),z )= U_2(I(x,z),I(y,z)),其中U_1,U_2被赋予可表示的单位,而I是未知函数,尤其是模糊蕴涵。使用获得的特征,我们表明当U_1,U_2都是可表示的单位且/是连续的模糊蕴涵时,第一个方程不成立。因此,我们提出了第一个方程的解,它是具有连续垂直截面的模糊含义。对于第二个方程,情况大不相同-当U_1,U_2都是可表示的单位时,则没有解是模糊的。作为副产品,我们获得了未知函数f的加性柯西泛函方程的解:[-∞,∞]→[-∞,∞],具有加法∞+(-∞)和(-∞)+的不同含义∞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号