首页> 外文期刊>Fuzzy sets and systems >Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study
【24h】

Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study

机译:基于核的模糊聚类与模糊聚类:对比实验研究

获取原文
获取原文并翻译 | 示例

摘要

In this study, we present a comprehensive comparative analysis of kernel-based fuzzy clustering and fuzzy clustering. Kernel based clustering has emerged as an interesting and quite visible alternative in fuzzy clustering, however, the effectiveness of this extension vis-a-vis some generic methods of fuzzy clustering has neither been discussed in a complete manner nor the performance of clustering quantified through a convincing comparative analysis. Our focal objective is to understand the performance gains and the importance of parameter selection for kernelized fuzzy clustering. Generic Fuzzy C-Means (FCM) and Gustafson-Kessel (GK) FCM are compared with two typical generalizations of kernel-based fuzzy clustering: one with prototypes located in the feature space (KFCM-F) and the other where the prototypes are distributed in the kernel space (KFCM-K). Both generalizations are studied when dealing with the Gaussian kernel while KFCM-K is also studied with the polynomial kernel. Two criteria are used in evaluating the performance of the clustering method and the resulting clusters, namely classification rate and reconstruction error. Through carefully selected experiments involving synthetic and Machine Learning repository data sets, we demonstrate that the kernel-based FCM algorithms produce a marginal improvement over standard FCM and GK for most of the analyzed data sets. It has been observed that the kernel-based FCM algorithms are in a number of cases highly sensitive to the selection of specific values of the kernel parameters.
机译:在这项研究中,我们提出了基于核的模糊聚类和模糊聚类的综合比较分析。在模糊聚类中,基于内核的聚类已成为一种有趣且显而易见的替代方法,但是,相对于某些通用的模糊聚类方法,这种扩展的有效性尚未得到完整的讨论,也没有通过聚类的方法量化聚类的性能。有说服力的比较分析。我们的主要目标是了解性能提升和参数选择对内核化模糊聚类的重要性。将通用模糊C均值(FCM)和Gustafson-Kessel(GK)FCM与基于内核的模糊聚类的两种典型概括进行了比较:一种具有位于特征空间中的原型(KFCM-F),另一种具有原型的分布在内核空间(KFCM-K)中。在处理高斯核时,研究了两种概括,而对KFCM-K进行了多项式核研究。在评估聚类方法和所得聚类的性能时使用了两个标准,即分类率和重构误差。通过精心选择的涉及合成和机器学习存储库数据集的实验,我们证明了对于大多数分析的数据集,基于内核的FCM算法相对于标准FCM和GK均产生了边际改进。已经观察到,在许多情况下,基于内核的FCM算法对选择内核参数的特定值高度敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号