首页> 外文期刊>Future generation computer systems >PROTECTOR: An optimized deep learning-based framework for image spam detection and prevention
【24h】

PROTECTOR: An optimized deep learning-based framework for image spam detection and prevention

机译:保护者:用于图像垃圾邮件检测和预防的基于深度学习的框架

获取原文
获取原文并翻译 | 示例

摘要

Image spam is a spamming technique that integrates spam text content into graphical images in order to bypass conventional text-based spam filters. In order to detect image spam efficiently, it is important to analyze the image data. The existing image spam detection techniques in literature focus on textual or graphic features of the image. None of the existing techniques considered the link information of the image which results in low accuracy and performance degradation. So, to fill these gaps, in this paper, we analyzed the link properties of image, for image spam detection and prevention. We propose an optimized framework called as PROTECTOR. In PROTECTOR, the rank score is generated by using the linkage information of the image, textual information of the image, and metadata information of the image. The computed rank score indicates the relevance of an image. This rank score is then used to train a deep neural network design of deep learning, which yields the accuracy of 96% with respect to various performance evaluation metrics. Also, the optimization algorithm, i.e., genetic algorithm is fitted in the results according to the defined fitting function. The proposed framework is validated with standard dataset of Image spam Hunter.
机译:图像垃圾邮件是一种垃圾邮件技术,它将垃圾邮件文本内容集成到图形图像中,以便绕过传统的基于文本的垃圾邮件过滤器。为了有效地检测图像垃圾邮件,重要的是分析图像数据。文学焦点上的现有图像垃圾邮件检测技术对图像的文本或图形特征。没有现有技术认为图像的链接信息导致低精度和性能下降。因此,为了填补这些空白,在本文中,我们分析了图像的链接属性,用于图像垃圾邮件检测和预防。我们提出了一个优化的框架,称为保护器。在保护器中,通过使用图像的图像,图像的文本信息和图像的元数据信息来生成等级分数。计算的等级分数表示图像的相关性。然后,这种等级得分将用于培训深度学习的深度神经网络设计,这对于各种性能评估度量来看,这会产生96%的准确性。此外,优化算法,即遗传算法在根据定义的拟合函数的结果中安装。建议的框架用图像垃圾邮件猎人的标准数据集进行了验证。

著录项

  • 来源
    《Future generation computer systems》 |2021年第12期|41-58|共18页
  • 作者

    Aaisha Makkar; Neeraj Kumar;

  • 作者单位

    Computer Science Engineering Department Chandigarh University Chandigarh India;

    Computer Science and Engineering Department Thapar Institute of Engineering and Technology Patiala India King Abdulaziz University Jeddah Saudi Arabia Department of Computer Science and Information Engineering Asia University Taiwan School of Computer Science University of Petroleum and Energy Studies Dehradun Uttarakhand;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image spam; Deep learning; Link spam; Optimization;

    机译:图像垃圾邮件;深度学习;链接垃圾邮件;优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号