首页> 外文期刊>Future generation computer systems >Self-aware distributed deep learning framework for heterogeneous IoT edge devices
【24h】

Self-aware distributed deep learning framework for heterogeneous IoT edge devices

机译:异构IOT边缘设备的自我意识分布式深度学习框架

获取原文
获取原文并翻译 | 示例

摘要

Implementing artificial intelligence (AI) in the Internet of Things (IoT) involves a move from the cloud to the heterogeneous and low-power edge, following an urgent demand for deploying complex training tasks in a distributed and reliable manner. This work proposes a self-aware distributed deep learning (DDL) framework for IoT applications, which is applicable to heterogeneous edge devices aiming to improve adaptivity and amortize the training cost. The self-aware design including the dynamic self-organizing approach and the self-healing method enhances the system reliability and resilience. Three typical edge devices are adopted with cross-platform Docker deployment: Personal Computers (PC) for general computing devices, Raspberry Pi 4Bs (Rpi) for resource-constrained edge devices, and Jetson Nanos fjts) for AI-enabled edge devices. Benchmarked with ResNet-32 on CIFAR-10, the training efficiency of tested distributed clusters is increased by 8.44x compared to the standalone Rpi. The cluster with 11 heterogeneous edge devices achieves a training efficiency of 200.4 images/s and an accuracy of 92.45%. Results prove that the self-organizing approach functions well with dynamic changes like devices being removed or added. The self-healing method is evaluated with various stabilities, cluster scales, and breakdown cases, testifying that the reliability can be largely enhanced for extensively distributed deployments. The proposed DDL framework shows excellent performance for training implementation with heterogeneous edge devices in IoT applications with high-degree scalability and reliability.
机译:在互联网上实施人工智能(IOT)涉及从云以以分布式和可靠的方式部署复杂的训练任务的迫切需求,涉及从云到异构和低功率边缘的移动。这项工作提出了一种自我意识的分布式深度学习(DDL)框架,适用于旨在提高适应性和培训成本的适应性和摊销的异构边缘设备。自我意识设计,包括动态自组织方法和自我修复方法提高了系统可靠性和弹性。使用跨平台Docker部署:普通计算设备的个人计算机(PC),用于支持AI的边缘设备的资源受限边缘设备的Raspberry PI 4BS(RPI),以及用于AI的边缘设备的覆盆子PI 4BS(RPI)。与CIFAR-10上的Reset-32基准测试,与独立RPI相比,测试分布式簇的训练效率增加了8.44倍。具有11个异构边缘设备的群集实现了200.4图像的训练效率,精度为92.45%。结果证明,自组织方法与正在删除或添加的设备这样的动态变化很好。通过各种稳定性,群集尺度和故障情况进行评估自修复方法,作证可以在很大程度上增强可靠性,以便广泛分布式部署。所提出的DDL框架显示出具有高度可扩展性和可靠性的IOT应用中的异构边缘设备的培训性能优异。

著录项

  • 来源
    《Future generation computer systems》 |2021年第12期|908-920|共13页
  • 作者单位

    School of Information Science and Technology State Key Laboratory of ASIC and System Fudan University Shanghai China;

    School of Information Science and Technology State Key Laboratory of ASIC and System Fudan University Shanghai China;

    School of Information Science and Technology State Key Laboratory of ASIC and System Fudan University Shanghai China;

    School of Information Science and Technology State Key Laboratory of ASIC and System Fudan University Shanghai China School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Sweden;

    School of Information Science and Technology State Key Laboratory of ASIC and System Fudan University Shanghai China;

    School of Information Science and Technology State Key Laboratory of ASIC and System Fudan University Shanghai China;

    School of Information Science and Technology State Key Laboratory of ASIC and System Fudan University Shanghai China;

    School of Information Science and Technology State Key Laboratory of ASIC and System Fudan University Shanghai China;

    School of Information Science and Technology State Key Laboratory of ASIC and System Fudan University Shanghai China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Internet of Things (IoT); Edge computing; Distributed deep learning; Deep neural networks; Self-awareness;

    机译:事情互联网(物联网);边缘计算;分布式深度学习;深神经网络;自我意识;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号