首页> 外文期刊>Future generation computer systems >High performance ant colony system based on GPU warp specialization with a static-dynamic balanced candidate set strategy
【24h】

High performance ant colony system based on GPU warp specialization with a static-dynamic balanced candidate set strategy

机译:基于GPU经线专业化的高性能蚁群系统,具有静动态平衡候选策略

获取原文
获取原文并翻译 | 示例

摘要

To improve the performance of parallel algorithms, it is necessary to make full utilization of computing resources and computing power of parallel hardware. However, the utilization efficiency of the computation must also be considered. Ant Colony System (ACS) has natural parallelism, and the procedure "Selecting the next element" is one of its main key computational components for combinatorial optimization problems. If all elements in the candidate set have been visited, a global search in the complete element domain needs to be performed and its computational overhead is enormous. Based on extensive experiments, we show that the results of global searches are also valuable for subsequent iterations of ACS. Therefore, an innovative static-dynamic balanced candidate set strategy, denoted by ID-CS, is proposed. ID-CS saves the result of global searches in previous iterations in order to reuse them in later iterations so that it can decrease the number of global searches. Furthermore, a novel GPU parallel ACS algorithm, ACS_GPU_WSP, is proposed based on the producer-consumer parallel model by GPU Warp Specialization. Each ant divides its computational work into private work and public work. For 11 large-scale typical TSP problems, compared with the state-of-art GPU data-level parallel implementation, it has achieved a large performance improvement.
机译:为了提高并行算法的性能,有必要充分利用计算资源和并行硬件的计算能力。但是,还必须考虑计算的利用效率。蚁群系统(ACS)具有自然并行性,程序“选择下一个元素”是组合优化问题的主要关键计算组件之一。如果已经访问了候选集中的所有元素,则需要执行完整元素域中的全局搜索,并且其计算开销是巨大的。基于广泛的实验,我们表明全球搜索的结果对于随后的ACS迭代也是有价值的。因此,提出了一种由ID-CS表示的创新静态平衡候选策略。 ID-CS在以前的迭代中保存全局搜索结果,以便在稍后的迭代中重复使用它们,以便降低全局搜索的数量。此外,基于GPU经线专业化的生产者 - 消费者并行模型提出了一种新型GPU并行ACS算法ACS_GPU_WSP。每个蚂蚁将其计算工作分为私人工作和公共工作。对于11个大规模典型的TSP问题,与最先进的GPU数据级并行实现相比,它已经实现了大的性能改进。

著录项

  • 来源
    《Future generation computer systems》 |2021年第12期|136-150|共15页
  • 作者单位

    The Beijing Key Lab of Intelligent Telecommunication Software and Multimedia School of Computer Science Beijing University of Posts and Telecommunications (BUPT) Beijing CO 100876 China;

    The Beijing Key Lab of Intelligent Telecommunication Software and Multimedia School of Computer Science Beijing University of Posts and Telecommunications (BUPT) Beijing CO 100876 China;

    The Beijing Key Lab of Intelligent Telecommunication Software and Multimedia School of Computer Science Beijing University of Posts and Telecommunications (BUPT) Beijing CO 100876 China;

    The Beijing Key Lab of Intelligent Telecommunication Software and Multimedia School of Computer Science Beijing University of Posts and Telecommunications (BUPT) Beijing CO 100876 China;

    China Academy of Aerospace Aerodynamics Beijing CO 100074 China;

    The Beijing Key Lab of Intelligent Telecommunication Software and Multimedia School of Computer Science Beijing University of Posts and Telecommunications (BUPT) Beijing CO 100876 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ACS/ACO; Candidate set strategy; GPU warp specialization; Producer-consumer parallel model; TSP;

    机译:ACS / ACO;候选集合策略;GPU经线专业化;生产者 - 消费者并行模型;TSP.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号