首页> 外文期刊>Future generation computer systems >A hypergraph based Kohonen map for detecting intrusions over cyber-physical systems traffic
【24h】

A hypergraph based Kohonen map for detecting intrusions over cyber-physical systems traffic

机译:用于检测网络 - 物理系统流量的侵入的超图形映射

获取原文
获取原文并翻译 | 示例

摘要

Cyber-Physical System acts as a cornerstone in Industry 4.0 by integrating information-technology, electrical, and mechanical engineering under the same crown. This cybernetic-mechatronic augmentation expanded the attack vectors in critical infrastructure's network, which gained the attraction of both cyber-offenders and cybersecurity researchers. Though the recent research works focus on developing proficient cybersecurity mechanisms, they often fail to address the major challenges such as handling the unseen zero-day exploits and detecting data irregularities that result in a poor attack detection rate. Hence to address the aforementioned challenges, this research article proposes an intelligent multi-level intrusion detection system to detect data-abnormalities in process-control network packets. The proposed approach involves the following phases: (ⅰ) Bloom-filter based payload level detection, (ⅱ) partition-based Kohonen mapping for learning abnormal data patterns using a deep version of Kohonen neural network enhanced by principal component analysis and partitioning property of Hypergraph, and (ⅲ) BLOSOM - a hybrid anomaly detection model. The impact of the proposed approach has been validated with the high-dimensional and heterogeneous benchmark datasets obtained from Mississippi State University (Gas-pipeline dataset) and Singapore University of Technology and Design (Secure WAter Treatment dataset). The proposed approach outscores the existing State-of-the-art approaches in terms of Precision, Recall, F-Score & Classification Accuracy and found to be robust, scalable & computationally attractive.
机译:网络 - 物理系统通过在同一个皇冠下整合信息技术,电气和机械工程来充当工业4.0的基石。这种网络冒录机制增强扩大了关键基础设施网络中的攻击向量,这增加了网络犯罪者和网络安全研究人员的吸引力。尽管最近的研究作品侧重于发展熟练的网络安全机制,但它们往往无法解决处理看不见的零日利用和检测导致攻击检测率不佳的数据不规则的主要挑战。因此,解决上述挑战,本研究文章提出了一种智能多级入侵检测系统,用于检测过程控制网络数据包中的数据异常。所提出的方法涉及以下阶段:(Ⅰ)基于盛开的滤波器有效载荷水平检测,(Ⅱ)基于分区的Kohonen映射,用于学习异常数据模式,使用Hypergraph的主要成分分析和分区性能增强了Kohonen神经网络的深度版本(Ⅲ)Blosom - 一种杂交异常检测模型。拟议方法的影响已通过密西西比州州立大学(天然气管线数据集)和新加坡技术和设计(安全水处理数据集)获得的高维和异构基准数据集进行验证。拟议的方法在精确,召回,F分和分类准确性方面突出了现有的最先进的方法,并发现具有稳健,可扩展和计算的吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号