首页> 外文期刊>Future generation computer systems >Detecting impersonation attacks in cloud computing environments using a centric user profiling approach
【24h】

Detecting impersonation attacks in cloud computing environments using a centric user profiling approach

机译:使用中心分析方法检测云计算环境中的模拟攻击

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing has become the most needed technology for the IT industry. Impersonation attacks are among the most dangerous threats that Clouds face. In this paper, we present an approach to detect masquerade attacks in Clouds. The efficient detection of these attacks should correlate user behaviors in distinct environments and also should apply to several deployment models. We present and evaluate three approaches to detect Impersonation and masquerade attacks. The first approach analyzes sequences of correlated system calls from the VMs operating systems, while the second analyzes the NetFlow data from the network environment. The third approach integrates these two approaches by using a neural network that will produce better detections than any of the first two approaches. To simplify the testing and the evaluation of the three methods, the Cloud Intrusion Detection Dataset (CIDD) is used as a source for cloud audits data. The evaluation has considered alternative deployment models through our two intrusion detection frameworks, CIDS and CIDS-VIRT. The paper also shows that the proposed detection approaches are more accurate and outperform the SWAD-MMD, a recent masquerade detection framework that works in the cloud computing systems. Furthermore, the paper details our experimental results and evaluates the computational performance and the detection accuracy of these approaches.
机译:云计算已成为IT行业最需要的技术。宏观攻击是云面的最危险的威胁之一。在本文中,我们提出了一种检测云中的化妆舞会攻击的方法。这些攻击的有效检测应将用户行为与不同的环境相关联,也应适用于多个部署模型。我们展示并评估了三种方法来检测冒充和化妆舞会攻击。第一方法分析来自VMS操作系统的相关系统调用的序列,而第二个分析来自网络环境的NetFlow数据。第三种方法通过使用将产生比前两种方法中的任何一种更好的检测的神经网络集成了这两种方法。为了简化三种方法的测试和评估,云入侵检测数据集(CIDD)用作云审核数据的源。评估通过我们的两个入侵检测框架,CID和CIDS-adv中考虑了替代部署模型。本文还表明,所提出的检测方法更准确,更优于瑞达-MMD,最近在云计算系统中工作的近期化妆舞框检测框架。此外,本文详述了我们的实验结果,并评估了这些方法的计算性能和检测准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号