首页> 外文期刊>Future generation computer systems >SpecMiner: Heuristic-based mining of service behavioral models from interaction traces
【24h】

SpecMiner: Heuristic-based mining of service behavioral models from interaction traces

机译:Specminer:基于启发式的交互迹线的服务行为模型挖掘

获取原文
获取原文并翻译 | 示例

摘要

Software behavioral models have proven useful for emulating and testing software systems. Many techniques have been proposed to infer behavioral models of software systems from their interaction traces. The quality of the inferred/mined model is critical to their successful use. While generalization is necessary to deduce concise behavioral models, existing techniques of inferring models, in general, overgeneralize what behavior is valid. Imprecise models include many spurious behaviors, and thus compromise the effectiveness of their use. In this paper, we propose a novel approach, named SpecMiner, that increases the precision of the behavioral model inferred from interaction traces. The essence of our approach is a heuristic-based generalization and truthful minimization. The set of heuristics include patterns to match input traces and generalize them towards concise model representations. Furthermore, we adopt a truthful minimization technique to merge these generalized traces. The key insight of our approach is to infer a concise behavioral model without compromising its precision. We present an empirical evaluation of how our approach improves upon the state-of-the-art specification inference techniques. The results show that our approach mines model with 100% precision and recall with a limited computation overhead.
机译:软件行为模型已经证明有助于模拟和测试软件系统。已经提出了许多技术来从其交互迹线推断软件系统的行为模型。推断/挖掘模型的质量对他们的成功使用至关重要。虽然泛化是推断出简要行为模型的必要条件,但是,推断模型的现有技术,一般来说,过度一定是什么行为有效。不精确的模型包括许多虚假行为,从而损害了他们使用的有效性。在本文中,我们提出了一种名为specminer的新方法,这增加了从交互迹线推断的行为模型的精度。我们方法的本质是一种基于启发式的泛化和真实的最小化。这组启发式包括模式以匹配输入迹线并概括为简洁模型表示。此外,我们采用了真实的最小化技术来合并这些广义迹线。我们方法的关键洞察是推断简洁的行为模型,而不会影响其精确度。我们提出了对我们的方法如何改善最先进的规范推理技术的实证评价。结果表明,我们的方法矿山模型具有100%精度,并回忆起有限的计算开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号