首页> 外文期刊>Future generation computer systems >A self structuring artificial intelligence framework for deep emotions modeling and analysis on the social web
【24h】

A self structuring artificial intelligence framework for deep emotions modeling and analysis on the social web

机译:社交网络深情感建模与分析的自我构造人工智能框架

获取原文
获取原文并翻译 | 示例

摘要

The social web has enabled individuals from all walks of life to openly express their emotions and sentiment in relation to current affairs, local issues and personal circumstances. Within the social web, social media encompasses deep emotional expressions that reflect a multitude of personalities and behaviors. Existing research in this space is heavily focused on supervised sentiment analysis and emotion detection, with limited work on modeling these deep emotions, mixed emotions and variations of emotional behaviors from unlabeled and unstructured social media conversations. In this study, we propose a comprehensive framework based on the principles of self-structuring artificial intelligence for emotion modeling and analysis that systematically integrates the modeling capabilities at a granular level on unstructured, unlabeled social media data. The research contributions of this framework are the detection, analysis and synthesis of deep emotion intensity, emotion transitions, emotion latent representations, and profile-based emotion classification. The self-structuring artificial intelligence framework amalgamates an ensemble of novel algorithms to eventuate these contributions. These algorithms extend the current state-of-the-art of natural language processing techniques, word embedding, Markov chains and growing self-organizing maps, specifically for deep emotions modeling and analysis. The framework is empirically evaluated on anonymized conversations from online mental health support forums. The outcomes identify profile-based emotion characteristics, emotion intensities, transitions and an overall latent representation across three distinct mental health groups in these forums. These outcomes are comprehensive in comparison to existing work which singularly focuses on sentiment analysis or emotion detection. The validity and effectiveness of its application on a real-world social media setting further establish the methodological novelty of this ensemble of self-structuring artificial intelligence for deep emotions.
机译:社交网络使各行各业的个人能够在与当前事务,当地问题和个人情况相关方面公开表达自己的情感和情绪。在社交网络中,社交媒体包括深刻的情感表达,反映了众多人物和行为。在这个空间的现有研究重点是受到监督的情感分析和情感检测,有限的努力在未标记和非结构化的社交媒体对话中建模这些深刻情绪,混合情感和情感行为的变化。在这项研究中,我们提出了一个全面的框架,基于自身结构性智能的原则,用于情感建模和分析,系统地将建模能力系统集成在非结构化,未标记的社交媒体数据上的粒度水平。该框架的研究贡献是检测,分析和综合深层情绪强度,情感转换,情感潜在陈述和基于个人资料的情感分类。自身结构化人工智能框架合并了一个新的算法的集合,以实现这些贡献。这些算法扩展了当前的自然语言处理技术的最新状态,单词嵌入,马尔可夫链和生长自组织地图,专门用于深刻的情绪建模和分析。框架是关于来自在线心理健康支持论坛的匿名对话的框架。结果确定了这些论坛三个不同心理健康团体的基于个人情绪特征,情感强度,过渡和整体潜在潜在的代表。与现有的工作相比,这些结果是全面的,这些工作是奇异地关注情感分析或情感检测的工作。其在真实社交媒体设定上申请的有效性和有效性进一步建立了这种自我构建人工智能的这种合奏的方法论新颖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号