首页> 外文期刊>Future generation computer systems >Dynamic redirection of real-time data streams for elastic stream computing
【24h】

Dynamic redirection of real-time data streams for elastic stream computing

机译:弹性流计算实时数据流的动态重定向

获取原文
获取原文并翻译 | 示例

摘要

An elastic stream computing system needs elastic adjustment of computing resource allocation and vertex parallelism to improve latency and throughput, which includes continuously or periodically scaling in/out the workload of computing nodes at runtime. Dynamic redirection can help with this elasticity issue by dynamically redirecting real-time data streams to computing resources. Due to the time-varying and unpredictable nature of real-time data streams, implementing redirection of data streams is challenging. Currently, the requirements of data streams redirection are not fully fulfilled, which directly affects the latency and throughput of stream computing systems. To bridge this gap, we proposed a dynamic redirection framework (called Dr-Stream) for elastic stream computing systems. This paper discussed the following aspects: (1) Investigating the dynamic redirection of real-time data streams, providing a general stream application model, a data stream model and a data stream grouping model, as well as formalizing the problem of load balancing optimization and data stream redirection. (2) Redirecting data streams among multiple instances of an operator at runtime by a lightweight load balancing strategy to improve the load balancing of a data center at the vertex level. Managing system states, especially the states of stateful operators by a logical ring-based strategy to improve accuracy. (3) Determining the number of instances for each operator, and deploying the instance(s) to computing nodes by a modified first-fit strategy at runtime. (4) Evaluating the fulfillment of low latency, high throughput, and load balancing objectives in a real-world distributed stream computing environment. Experimental results showed that Dr-Stream reduced the average system latency and load balancing of the data center by more than 20% and 15%, respectively. It also improved the average system stability by more than 15% and avoided over-utilization of computing nodes, as compared to the existing strategies in Storm.
机译:弹性流计算系统需要弹性调整计算资源分配和顶点并行性,以提高延迟和吞吐量,这包括在运行时连续或周期性地缩放计算节点的计算节点的工作量。动态重定向可以通过动态将实时数据流进行动态重定向到计算资源来帮助解决此弹性问题。由于实时数据流的时变且不可预测的性质,实现数据流的重定向是具有挑战性的。目前,没有完全满足数据流重定向的要求,这直接影响流计算系统的延迟和吞吐量。为了弥合这种差距,我们提出了一种动态重定向框架(称为DR-Stream),用于弹性流计算系统。本文讨论了以下几个方面:(1)调查实时数据流的动态重定向,提供一般流应用模型,数据流模型和数据流分组模型,以及正式地形成负载平衡优化问题数据流重定向。 (2)通过轻量级负载均衡策略在运行时重定向运算符的多个实例之间的数据流,以提高顶点级别的数据中心的负载平衡。管理系统状态,特别是通过基于逻辑环的策略来提高准确性的状态运营商的状态。 (3)确定每个运营商的实例数,并通过运行时将实例部署到计算节点计算节点。 (4)评估在现实世界分布式流计算环境中实现低延迟,高吞吐量和负载平衡目标的实现。实验结果表明,DR流分别将数据中心的平均系统延迟和负载平衡分别降低了20%和15%。与现有风暴中的现有策略相比,它还通过超过15%提高了平均系统稳定性,避免过度利用计算节点。

著录项

  • 来源
    《Future generation computer systems》 |2020年第11期|193-208|共16页
  • 作者单位

    School of Information Engineering China University of Geosciences Beijing 100083 China Polytechnic Center for Territory Spatial Big-data MNR of China China;

    School of Information Technology Deakin University Waurn Ponds Victoria 3216 Australia;

    Cloud Computing and Distributed Systems (CLOUDS) Laboratory School of Computing and Information Systems The University of Melbourne Australia;

    Beijing Key Laboratory of Internet Culture and Digital Dissemination Research Beijing Information Science & Technology University Beijing 100101 China;

    Cloud Computing and Distributed Systems (CLOUDS) Laboratory School of Computing and Information Systems The University of Melbourne Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Data stream redirection; Stream computing; Elastic processing; Load balancing; Distributed system; Big data;

    机译:数据流重定向;流计算;弹性加工;负载均衡;分布式系统;大数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号