首页> 外文期刊>Future generation computer systems >CAPre: Code-Analysis based Prefetching for Persistent Object Stores
【24h】

CAPre: Code-Analysis based Prefetching for Persistent Object Stores

机译:CAPRE:基于代码分析的持久对象存储的预取

获取原文
获取原文并翻译 | 示例

摘要

Data prefetching aims to improve access times to data storage systems by predicting data records that are likely to be accessed by subsequent requests and retrieving them into a memory cache before they are needed. In the case of Persistent Object Stores, previous approaches to prefetching have been based on predictions made through analysis of the store's schema, which generates rigid predictions, or monitoring access patterns to the store while applications are executed, which introduces memory and/or computation overhead. In this paper, we present CAPre, a novel prefetching system for Persistent Object Stores based on static code analysis of object-oriented applications, CAPre generates the predictions at compile-time and does not introduce any overhead to the application execution. Moreover, CAPre is able to predict large amounts of objects that will be accessed in the near future, thus enabling the object store to perform parallel prefetching if the objects are distributed, in a much more aggressive way than in schema-based prediction algorithms. We integrate CAPre into a distributed Persistent Object Store and run a series of experiments that show that it can reduce the execution time of applications from 9% to over 50%, depending on the nature of the application and its persistent data model.
机译:数据预取旨在通过预测随后的请求可能访问的数据记录来改善对数据存储系统的访问时间,并在需要之前将它们重新检索到存储器缓存中。在持久对象存储的情况下,先前的预取方法基于通过对商店的模式进行的预测,这在执行了应用程序的同时生成刚性预测或监视到商店的访问模式,这引入了存储器和/或计算开销。在本文中,我们提出了一种基于面向对象应用程序的静态码分析的持久对象存储的新型预取系统,CAPRE在编译时生成预测,并且不会向应用程序执行引入任何开销。此外,CAPRE能够预测将在不久的将来访问的大量对象,从而使对象存储能够以比基于架构的预测算法更具侵略性的方式来执行并行预取。我们将CAPRE集成到分布式持久对象存储中,并运行一系列实验,表明它可以将应用程序的执行时间从9%降低到超过50%,具体取决于应用程序的性质及其持久性数据模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号