首页> 外文期刊>Future generation computer systems >CorClustST-Correlation-based clustering of big spatio-temporal datasets
【24h】

CorClustST-Correlation-based clustering of big spatio-temporal datasets

机译:基于Corclustst-Collelitation的大时空数据集聚类

获取原文
获取原文并翻译 | 示例

摘要

Increasing amounts of high-velocity spatio-temporal data reinforce the need for clustering algorithms which are effective for big data processing and data reduction. As currently applied spatio-temporal clustering algorithms have certain drawbacks regarding the comparability of the results, we propose an alternative spatio-temporal clustering technique which is based on empirical spatial correlations over time. As a key feature, CorClustST makes it easily possible to compare and interpret clustering results for different scenarios such as multiple underlying variables or varying time frames. In a test case, we show that the clustering strategy successfully identifies increasing spatial correlations of wind power forecast errors in Europe for longer forecast horizons. An extension of the clustering algorithm is finally presented which allows for a large-scale parallel implementation and helps to circumvent memory limitations. The proposed method will especially be helpful for researchers who aim to preprocess big spatio-temporal datasets and who intend to compare clustering results and spatial dependencies for different scenarios.
机译:越来越多的高速时空数据增加了对大数据处理和数据减少有效的集群算法的需求。由于目前应用的时空聚类算法具有关于结果的可比性的某些缺点,我们提出了一种替代的时空聚类技术,其基于时间随着时间的推移基于经验空间相关性。作为关键特征,Corclustst使得可以轻松地比较和解释群集结果,以便不同方案,例如多个底层变量或不同的时间帧。在一个测试用例中,我们表明聚类策略成功地识别了欧洲风电预测误差的空间相关性,以便更长的预测视野。最终呈现聚类算法的扩展,其允许大规模并行实现,并有助于规避内存限制。该方法对旨在预处理大型时空数据集的研究人员尤其有所帮助,并且旨在比较不同场景的聚类结果和空间依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号