首页> 外文期刊>Future generation computer systems >Decompiled APK based malicious code classification
【24h】

Decompiled APK based malicious code classification

机译:非编译APK基于恶意代码分类

获取原文
获取原文并翻译 | 示例

摘要

Due to the increasing growth in the variety of Android malware, it is important to distinguish between the unique types of each. In this paper, we introduce the use of a decompiled source code for malicious code classification. This decompiled source code provides deeper analysis opportunities and understanding of the nature of malware. Malicious code differs from text due to syntax rules of compilers and the effort of attackers to evade potential detection. Hence, we adapt Natural Language Processing-based techniques under some constraints for malicious code classification. First, the proposed methodology decompiles the Android Package Kit files, then API calls, keywords, and non-obfuscated tokens are extracted from the source code and categorized to stop-tokens, feature-tokens, and long-tail-tokens. We also introduce the use of generalized N-tokens to represent tokens that are typically less frequent. Our approach was evaluated, in comparison to the use of API calls and permissions for features, as a baseline, and their combination, as well as in comparison to the use of neural network architectures based on decompiled Android Package Kits. A rigorous evaluation of comprehensive public real-world Android malware datasets, including 24,553 apps that were categorized to 71 families for the malicious families classification, and 60,000 apps for malicious code detection was performed. Our approach outperformed the baselines in both tasks.
机译:由于各种Android恶意软件的增长越来越大,重要的是区分每个类型的类型。在本文中,我们介绍了对恶意代码分类的分解源代码的使用。这种反编译的源代码提供了更深入的分析机会和对恶意软件性质的理解。恶意代码与文本不同,由于编译器的语法规则以及攻击者逃避潜在检测的努力。因此,我们根据一些限制对基于自然语言处理的技术进行恶意代码分类。首先,提出的方法分解Android包套件文件,然后从源代码中提取API调用,关键字和非混淆令牌,并分为停止令牌,功能令牌和长尾令牌。我们还介绍了广义的N-agkens来表示通常频繁的令牌。与使用API​​调用和权限的使用,作为基线及其组合的使用,以及基于分解的Android包套件的神经网络架构的使用相比,评估了我们的方法。对全面公共现实世界Android恶意软件数据集进行严格评估,其中包括24,553个应用程序,分为71个家庭的恶意家庭分类,并进行了60,000个用于恶意代码检测应用程序。我们的方法在两个任务中表现出基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号