首页> 外文期刊>Future generation computer systems >Efficient approach for incremental high utility pattern mining with indexed list structure
【24h】

Efficient approach for incremental high utility pattern mining with indexed list structure

机译:具有索引列表结构的增量高实用模式挖掘的有效方法

获取原文
获取原文并翻译 | 示例

摘要

Since traditional frequent pattern mining approaches assume that all the items in binary databases have the same importance regardless of their own features, they have difficulty in satisfying requirements of real world applications such as finding patterns with high profits. High utility pattern mining was proposed to deal with such an issue, and various relevant works have been researched. There have been demands for efficient solutions to find interesting knowledge from specific environments in which data accumulates continuously with the passage of time such as social network service, wireless network sensor data, etc. Although several algorithms have been devised to mine high utility patterns from incremental databases, they still have performance limitations in the process of generating a large number of candidate patterns and identifying actually useful results from the found candidates. In order to solve the problems, we propose a new algorithm for mining high utility patterns from incremental databases. The newly proposed data structures in a list form and mining techniques allow our approach to extract high utility patterns without generating any candidates. In addition, we suggest restructuring and pruning techniques that can process incremental data more efficiently. Experimental results on various real and synthetic datasets demonstrate that the proposed algorithm outperforms state-of-the-art methods in terms of runtime, memory, and scalability. (C) 2019 Elsevier B.V. All rights reserved.
机译:由于传统的频繁模式挖掘方法假设二进制数据库中的所有项目如何具有相同的重要性,而不管自己的功能如何,它们都难以满足现实世界应用的要求,例如寻找具有高利润的模式。提出了高效用模式挖掘,以处理此类问题,并研究了各种相关工程。有需要有效的解决方案,以了解来自多个环境的特定环境中的有趣知识,其中数据通过社交网络服务,无线网络传感器数据等的时间通过连续累积,尽管已经设计了几种算法从增量挖掘高实用程序模式数据库,它们仍然具有在生成大量候选模式的过程中的性能限制,并识别来自找到的候选者的实际有用的结果。为了解决问题,我们提出了一种从增量数据库中挖掘高实用程序模式的新算法。列表表单和挖掘技术中的新提出的数据结构允许我们提取高实用模式而不产生任何候选者。此外,我们建议更有效地处理增量数据的重组和修剪技术。各种实际和合成数据集的实验结果表明,所提出的算法在运行时,内存和可扩展性方面优于最先进的方法。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号