首页> 外文期刊>Future generation computer systems >Efficient approach for incremental high utility pattern mining with indexed list structure
【24h】

Efficient approach for incremental high utility pattern mining with indexed list structure

机译:具有索引列表结构的增量式高实用模式挖掘的有效方法

获取原文
获取原文并翻译 | 示例

摘要

Since traditional frequent pattern mining approaches assume that all the items in binary databases have the same importance regardless of their own features, they have difficulty in satisfying requirements of real world applications such as finding patterns with high profits. High utility pattern mining was proposed to deal with such an issue, and various relevant works have been researched. There have been demands for efficient solutions to find interesting knowledge from specific environments in which data accumulates continuously with the passage of time such as social network service, wireless network sensor data, etc. Although several algorithms have been devised to mine high utility patterns from incremental databases, they still have performance limitations in the process of generating a large number of candidate patterns and identifying actually useful results from the found candidates. In order to solve the problems, we propose a new algorithm for mining high utility patterns from incremental databases. The newly proposed data structures in a list form and mining techniques allow our approach to extract high utility patterns without generating any candidates. In addition, we suggest restructuring and pruning techniques that can process incremental data more efficiently. Experimental results on various real and synthetic datasets demonstrate that the proposed algorithm outperforms state-of-the-art methods in terms of runtime, memory, and scalability. (C) 2019 Elsevier B.V. All rights reserved.
机译:由于传统的频繁模式挖掘方法假定二进制数据库中的所有项目都具有相同的重要性,而不论其自身的功能如何,因此它们很难满足现实世界中的应用要求,例如寻找高利润的模式。为了解决该问题,提出了高实用性模式挖掘,并进行了各种相关的研究。一直需要有效的解决方案,以便从特定环境中找到有趣的知识,在特定环境中,数据随着时间的流逝而不断累积,例如社交网络服务,无线网络传感器数据等。尽管已经设计了几种算法来从增量挖掘高效模式。数据库,它们在生成大量候选模式以及从找到的候选中识别出实际有用的结果的过程中仍然存在性能限制。为了解决这些问题,我们提出了一种从增量数据库中挖掘高效模式的新算法。新提出的列表形式的数据结构和挖掘技术使我们的方法能够提取高效模式,而无需生成任何候选者。此外,我们建议使用重组和修剪技术,以更有效地处理增量数据。在各种真实数据集和合成数据集上的实验结果表明,该算法在运行时间,内存和可伸缩性方面均优于最新方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号