首页> 外文期刊>Future generation computer systems >Stochastic scheduling for variation-aware virtual machine placement in a cloud computing CPS
【24h】

Stochastic scheduling for variation-aware virtual machine placement in a cloud computing CPS

机译:在云计算CPS中感知变化的虚拟机放置的随机调度

获取原文
获取原文并翻译 | 示例

摘要

As the most promising computing paradigm, cloud computing opens up new horizons for the area of high-performance distributed computing. Cyber-physical Systems (CPSs) present novel digital systems, which integrate computation, communication and the control of physical resource. Applied CPSs architecture in cloud computing can provide real-time and scalable resource monitoring and offer time-critical applications. With unrivaled scalability and flexibility, the CPSs based cloud services brings significant convenience to customers in need of elastic computing power. The quality of CPSs based cloud services is, to an large extent, determined by the performance of Virtual Machine (VM) placement algorithm for the data center. VM placement also effect the communication between applications and physical resource distribution in cloud computing CPSs. The traditional VM placement algorithm is built upon the two-tier architecture. With the presence of multi-media applications, the application level controller cannot accurately quantify the varying amount computing resources required by VMs at runtime. Consequently, lacking accurate resource demand for each VM, controller at the data center level cannot generate the VM placement with satisfactory feasibility. This architecture no longer fits the modern data centers. In this paper, the two tier VM placement framework is proposed to resolve this technical challenge. Our LP-based variation-unaware VM placement algorithm generates the VM placement with minimized energy consumption. On the other hand, our feasibility driven stochastic VM placement (FDSP) algorithm works seamlessly with the LP-based algorithm to achieve desirable feasibility of the placement. Our experimental results show that the LP-based variation unaware VM placement algorithm improves the energy consumption by 15.3% on average from the baseline algorithm. For test cases with resource request variations, the FDSP algorithm saves 15.7% energy cost compared to the "worst case scenario" of the traditional VM placement paradigm. On the other hand, it improves the feasibility by 50.0% compared to the "best case scenario".
机译:作为最有前途的计算范例,云计算为高性能分布式计算领域开辟了新的视野。网络物理系统(CPS)提出了新颖的数字系统,该系统集成了计算,通信和物理资源控制。云计算中应用的CPS体系结构可以提供实时和可扩展的资源监视,并提供时间紧迫的应用程序。凭借无与伦比的可扩展性和灵活性,基于CPS的云服务为需要弹性计算能力的客户带来了极大的便利。基于CPS的云服务的质量在很大程度上取决于数据中心的虚拟机(VM)放置算法的性能。 VM放置还会影响云计算CPS中应用程序与物理资源分配之间的通信。传统的VM放置算法基于两层体系结构。由于存在多媒体应用程序,因此应用程序级别控制器无法在运行时准确量化VM所需的变化量的计算资源。因此,由于缺少每个VM的准确资源需求,因此数据中心级别的控制器无法以令人满意的可行性生成VM放置。这种体系结构不再适合现代数据中心。在本文中,提出了两层VM放置框架来解决此技术难题。我们基于LP的无变化VM放置算法可以以最低的能耗生成VM放置。另一方面,我们的可行性驱动的随机VM放置(FDSP)算法与基于LP的算法无缝配合,以实现理想的放置可行性。我们的实验结果表明,基于LP的不知道变量的VM放置算法比基线算法平均平均降低了15.3%的能耗。对于具有资源请求变化的测试用例,与传统VM放置范例的“最坏情况”相比,FDSP算法节省了15.7%的能源成本。另一方面,与“最佳情况”相比,它使可行性提高了50.0%。

著录项

  • 来源
    《Future generation computer systems》 |2020年第4期|779-788|共10页
  • 作者

  • 作者单位

    School of Computer Science China University of Geosciences Wuhan 430074 PR China;

    Department of Electrical and Computer Engineering Michigan Technological University Houghton MI 49931 USA;

    School of Information Technologies The University of Sydney Australia;

    School of Computer Science China University of Geosciences Wuhan 430074 PR China Computing Science at Newcastle University UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Virtual machine; Cloud computing; Cyber-Physical Systems (CPSs); Variation-aware; Optimization;

    机译:虚拟机;云计算;网络物理系统(CPS);变化意识;优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号