【24h】

GACA-VMP: Virtual Machine Placement Scheduling in Cloud Computing Based on Genetic Ant Colony Algorithm Approach

机译:GACA-VMP:基于遗传蚁群算法的云计算虚拟机布局调度

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing provides resources as services to customs by using virtualization technology. When virtual machines (VMs) are hosted on physical servers, there seem to be a chief concern that the way of intermediate and industrializing countries to deal with the great energy consumed by maintaining the servers in data centers. Therefore, the VM placement (VMP) problem is significant in both energy optimization and cloud computing. In this paper we propose a heuristic approach based on an improved ant colony algorithm (ACA) to solve the VMP problem, named as GACA-VMP. G is presented for genetic, that means the algorithm will conjunction with the genetic algorithm to solve the problem. By analyzing the pheromone during the ant movements, which is defined in ant placement between VM pairs, then the algorithm optimize the calculation of pheromone in load balancing theory, that is how we can select the suitable selection results. We evaluate the performance of the proposed GACA-VMP approach in solving VMP compared with the ones obtained with the simple ant colony algorithm (ACA), and the first-fit decreasing (FFD) algorithm. The results show that GACA-VMP can solve VMP more efficiently to select the opportune number of physical servers, together with remarkable resource utilization.
机译:云计算通过使用虚拟化技术向海关提供资源作为服务。当虚拟机(VM)托管在物理服务器上时,似乎主要担心的是中间国家和工业化国家如何处理通过将服务器维护在数据中心中而消耗的大量能源。因此,VM放置(VMP)问题在能源优化和云计算中都非常重要。在本文中,我们提出了一种基于改进的蚁群算法(ACA)的启发式方法来解决VMP问题,称为GACA-VMP。 G是针对遗传提出的,这意味着该算法将与遗传算法结合使用来解决问题。通过分析在蚂蚁移动期间定义的信息素(VM对之间的蚂蚁放置),该算法根据负载均衡理论优化了信息素的计算,这就是我们如何选择合适的选择结果的原因。与简单蚁群算法(ACA)和首次拟合递减(FFD)算法相比,我们评估了GACA-VMP方法在求解VMP方面的性能。结果表明,GACA-VMP可以更有效地解决VMP,从而选择合适数量的物理服务器,并且资源利用率高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号