首页> 外文期刊>Future generation computer systems >Self-adaptive resource allocation for cloud-based software services based on iterative QoS prediction model
【24h】

Self-adaptive resource allocation for cloud-based software services based on iterative QoS prediction model

机译:基于迭代QoS预测模型的基于云的软件服务的自适应资源分配

获取原文
获取原文并翻译 | 示例

摘要

Emerging cloud-based software services have proposed request for self-adaptive resource allocation that provides to dynamically adjust resources on demand. Traditional self-adaptive resource allocation methods are rule-driven that they combine expert knowledge with a separate set of management rules for each software, leading to high implementation complexity and administrative cost. Recent researches on self-adaptive resource allocation mainly focus on machine learning and control theory. However, machine learning techniques require plenty training data, which in many cases is insufficient and leads to low accuracy of QoS prediction model as well as the ineffectiveness of resource allocation, while resource allocation based on control theory needs a large number of iterations, resulting in a high overhead such as frequent virtual machine switches. This paper proposes a self-adaptive resource allocation method that is actually a framework composed of feedback loops, each of which goes through our designed iterative QoS prediction model and PSO-based runtime decision algorithm. In contrast to previous QoS prediction models which predict a QoS value once and for all, ours improves the predicted QoS value in iterations towards the best one. In the prediction, we first use the workload, the allocated resource, the real QoS value and an operation of resource allocation to produce a QoS value. Then we employ PSO-based runtime decision algorithm together with the predicted QoS value to determine future resource allocation operations. The loops iterate until the PSO-based algorithm suggests no further improvement over the current resource allocation. We evaluate our approach on RUBiS benchmark, illustrating that based on the same historical data, our method can achieve a better QoS prediction accuracy that is 15% higher than the current state of the art. Moreover, it is also shown the effectiveness of cloud application resource allocation is improved by roughly 5%-6%.
机译:新兴的基于云的软件服务已提出了对自适应资源分配的请求,该资源分配可根据需要动态调整资源。传统的自适应资源分配方法是规则驱动的,它们将专家知识与每种软件的单独管理规则集结合在一起,从而导致很高的实现复杂性和管理成本。自适应资源分配的最新研究主要集中在机器学习和控制理论上。然而,机器学习技术需要大量的训练数据,这在很多情况下是不够的,从而导致QoS预测模型的准确性低下以及资源分配的无效性,而基于控制理论的资源分配则需要大量的迭代,从而导致高开销,例如频繁的虚拟机切换。本文提出了一种自适应资源分配方法,该方法实际上是一个由反馈循环组成的框架,每个循环都要经过我们设计的迭代QoS预测模型和基于PSO的运​​行时决策算法。与以前的QoS预测模型(一劳永逸地预测QoS值)相反,我们的模型在迭代过程中将预测的QoS值提高到了最佳值。在预测中,我们首先使用工作负载,分配的资源,实际QoS值和资源分配操作来生成QoS值。然后,我们将基于PSO的运​​行时决策算法与预测的QoS值一起确定未来的资源分配操作。循环迭代,直到基于PSO的算法表明对当前资源分配没有进一步的改进。我们根据RUBiS基准评估了我们的方法,表明基于相同的历史数据,我们的方法可以实现更好的QoS预测精度,比当前的现有技术水平高15%。此外,还显示云应用程序资源分配的有效性提高了大约5%-6%。

著录项

  • 来源
    《Future generation computer systems》 |2020年第4期|287-296|共10页
  • 作者

  • 作者单位

    College of Mathematics and Computer Science Fuzhou University Fuzhou 350116 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou 350116 China;

    School of Software Tsinghua University Beijing 100084 China;

    School of Computer Science and Technology Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China Shandong Computer Science Center (National Supercomputer Center in Jinan) Jinan 250014 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cloud computing; Self-adaptive resource allocation; QoS prediction model; Runtime decision algorithm;

    机译:云计算;自适应资源分配;QoS预测模型;运行时决策算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号