首页> 外文期刊>Future generation computer systems >Evolving graph construction for successive recommendation in event-based social networks
【24h】

Evolving graph construction for successive recommendation in event-based social networks

机译:基于事件的社交网络中连续推荐的演化图构造

获取原文
获取原文并翻译 | 示例

摘要

Personalized recommendation can help individual users to quickly reserve their interested events, which makes it indispensable in event-based social networks (EBSNs). However, as each EBSN is often with large amount of entities and each upcoming event is normally with non-repetitive uniqueness, how to deal with such challenges is crucial to the success of event recommendation. In this paper, we propose an evolving graph-based successive recommendation (EGSR) algorithm to address such challenges: The basic idea is to exploit the random walk with restart (RWR) on a recommendation graph for ranking the upcoming events. In EGSR, we employ a sliding window mechanism to construct evolving graphs for successively recommending new events for each user. We propose a graph entropybased contribution measure for adjusting the window length and for weighting the history information. In EGSR, we also apply a topic analysis technique for analyzing event text description. We then propose to establish each user an interest model and to compute the similarities in between event content and user interest as edges' weights for each recommendation graph. In successive recommendation, the number of upcoming events may experience great variations in different times. For a fair comparison, we also propose a set of cumulative evaluation metrics based on the traditional recommendation performance metrics. Experiments have been conducted based on the crawled one year data from a real EBSN for two cities. Results have validated the superiority of the proposed EGSR algorithm over the peer ones in terms of better recommendation performance and reduced computation complexity. (C) 2019 Elsevier B.V. All rights reserved.
机译:个性化推荐可以帮助单个用户快速保留他们感兴趣的事件,这使得它在基于事件的社交网络(EBSN)中必不可少。但是,由于每个EBSN通常具有大量实体,每个即将发生的事件通常具有非重复的唯一性,因此如何应对此类挑战对于事件推荐的成功至关重要。在本文中,我们提出了一种基于进化图的连续推荐(EGSR)算法来解决这些挑战:基本思想是在推荐图中利用随机重启再启动(RWR)对即将发生的事件进行排名。在EGSR中,我们采用滑动窗口机制来构造不断发展的图,以便为每个用户连续推荐新事件。我们提出了一种基于图熵的贡献量度,用于调整窗口长度和加权历史信息。在EGSR中,我们还应用主题分析技术来分析事件文本描述。然后,我们建议建立每个用户的兴趣模型,并计算事件内容和用户兴趣之间的相似度,作为每个推荐图的边缘权重。在连续推荐中,即将发生的事件的数量可能在不同的时间经历很大的变化。为了公平地比较,我们还基于传统的推荐绩效指标提出了一组累积评估指标。实验是根据两个城市的真实EBSN收集的一年数据进行的。结果证明,在更好的推荐性能和降低的计算复杂度方面,所提出的EGSR算法优于同类算法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号