首页> 外文期刊>Future generation computer systems >Combining humans and machines for the future: A novel procedure to predict human interest
【24h】

Combining humans and machines for the future: A novel procedure to predict human interest

机译:结合人类和机器的未来:一种预测人类兴趣的新颖程序

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a method to quantify interest. In common terminology, when we engage with an object, e.g. Online Games, Social Networking Websites, Mobile Apps, etc., there is a degree of interest between us and the object. But, owing to the lack of a procedure that can quantify interest, we are unable to tell by how 'much' of a factor are we interested in the object. In other words, can we find a number for someone's interest? In this article, we propose a method that uses the principle of Bayesian Inference to tackle this issue. We formulate the "interest estimation problem" as a state estimation problem to deduce interest (in any object) indirectly from user activity. Activity caused by interest is computed through a subjective-objective weighted approach, then using indirect inference rules, we provide numerical estimates of interest. To do that, we model the dynamics of interest through the Ornstein-Uhlenbeck process. To further enhance the base performance, we draw inspiration from Stochastic Volatility models from Finance. Subsequently, drawing upon a self-adapting transfer function, we provide an avant-garde statistical procedure to model the transformation of interest into activity. The individual contributions are then combined and a solution is provided via Particle filters. Validation of the method is done in two ways. (1) Experimentation is performed on real datasets. Through numerical investigation we have found that the method shows good performance. (2) We implement the framework as a Web application and deploy it on an Enterprise Service Bus. The framework has been successfully hosted on a Cloud based Virtualized testbed consisting of several Virtual Machines constructed over XENServer as the underlying hypervisor. Through this experimental setup, we show the efficacy of the proposed algorithm in estimating interest, at much the same time, we demonstrate the viability of the method in practical cloud based deployment scenarios. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文提出了一种量化利益的方法。一般而言,当我们与物体接触时,例如在线游戏,社交网站,移动应用程序等,我们与对象之间存在一定程度的兴趣。但是,由于缺乏一种可以量化利益的程序,我们无法通过对对象的“多少”因素来判断。换句话说,我们能找到符合您兴趣的数字吗?在本文中,我们提出一种使用贝叶斯推理原理来解决此问题的方法。我们将“兴趣估计问题”公式化为状态估计问题,以从用户活动中间接推断出(在任何对象中)兴趣。由兴趣引起的活动是通过主观-客观加权方法计算的,然后使用间接推理规则,我们提供了兴趣的数值估计。为此,我们通过Ornstein-Uhlenbeck过程对感兴趣的动力学进行建模。为了进一步提高基本绩效,我们从金融业的随机波动率模型中汲取了灵感。随后,利用自适应传递函数,我们提供了一种前卫的统计程序来模拟感兴趣到活动的转换。然后合并各个贡献,并通过粒子过滤器提供解决方案。该方法的验证有两种方式。 (1)对真实数据集进行实验。通过数值研究,发现该方法具有良好的性能。 (2)我们将该框架实现为Web应用程序,并将其部署在Enterprise Service Bus上。该框架已成功托管在基于云的虚拟化测试平台上,该测试平台由在XENServer上构建的多个虚拟机作为基础虚拟机管理程序组成。通过该实验设置,我们展示了所提出算法在估计兴趣方面的功效,同时,我们还展示了该方法在基于云的实际部署场景中的可行性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号