首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >A Prototype Model to Predict Human Interest: Data Based Design to Combine Humans and Machines
【24h】

A Prototype Model to Predict Human Interest: Data Based Design to Combine Humans and Machines

机译:一种预测人类兴趣的原型模型:基于数据的设计与人类和机器相结合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the possibility of quantifying a person's interest using data-driven algorithms is investigated. In doing so, interest estimation problem is formulated as a latent state estimation problem, and an answer is deduced via Bayesian Inference. First, a Subjective-Objective approach is used to measure activity. Through this calculated activity, the method indirectly infers human latent state values. A formulation of interest is then presented by drawing inspiration from the Ornstein-Uhlenbeck (OU) process in Physics. Moreover, concepts of stochastic volatility are employed to vary the instantaneous volatility of the OU process. This is done to further improve the performance. Subsequently, the convergence speed of the OU process is varied with time. A novel statistical framework is discussed that dynamically transforms interest into activity. Each of these individual contributions is combined to present a solution via Monte Carlo Simulations. To demonstrate the efficacy of the proposed method, numerical simulations are performed on real datasets. Lastly, a prototype is engineered and the method is implemented as a RESTful Web service. The prototype is hosted as a Web service on several Virtual Machines to demonstrate the practical feasibility of the framework in cloud-based deployment scenarios.
机译:在本文中,研究了使用数据驱动算法量化一个人的兴趣的可能性。在这样做时,将兴趣估计问题作为潜在状态估计问题制定,并且通过贝叶斯推断推导出答案。首先,使用主观客观方法来测量活动。通过该计算的活动,该方法间接揭示人类潜在的状态值。然后通过从物理学中的ornstein-Uhlenbeck(OU)过程中吸入感兴趣的感兴趣来提出感兴趣的制剂。此外,使用随机挥发性的概念来改变OU过程的瞬时挥发性。这样做是为了进一步提高性能。随后,OU过程的收敛速度随时间而变化。讨论了一种新颖的统计框架,动态地将兴趣转换为活动。这些各个贡献中的每一个都组合以通过蒙特卡罗模拟呈现解决方案。为了证明所提出的方法的功效,对实际数据集进行数值模拟。最后,设计了一种原型,并且该方法被实现为RESTful Web服务。原型托管为几个虚拟机上的Web服务,以展示基于云的部署方案中框架的实际可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号