首页> 外文期刊>Future generation computer systems >A provenance-based heuristic for preserving results confidentiality in cloud-based scientific workflows
【24h】

A provenance-based heuristic for preserving results confidentiality in cloud-based scientific workflows

机译:基于出处的启发式算法,可在基于云的科学工作流程中保护结果的机密性

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing relies on resource sharing to provide a reliable environment for scientists to deploy their simulation-based experiments on distributed virtual resources to execute a wide range of scientific experiments. These experiments can be modeled as scientific workflows and many of them are data-intensive and produce a large volume of data, which is also stored in the cloud by Scientific Workflow Management Systems (SWfMS) using storage services. One recurrent concern regarding cloud storage services is confidentiality of stored data, i.e., if unauthorized people access data files they can infer knowledge about the results or even about the workflow specification. Encryption is a potential solution, but it may not be sufficient. A new level of security can be added to preserve data confidentiality: data dispersion. In order to reduce the risk, generated data files cannot be placed in the same location, or at least sensitive data files have to be distributed across many cloud storage services. In this article, we present OPTIC (OPTimizing Confidentiality of workflow results), an approach that aims at preserving workflow results confidentiality in cloud storage services by means of optimization techniques, such as mathematical programming and heuristic approaches. OPTIC generates a distribution plan for data files generated during a workflow execution. This plan disperses data files in several cloud storage services to preserve confidentiality, taking into account conflicts and restrictions amongst the data files. This distribution plan is then sent to the SWfMS that effectively stores generated data into specific buckets in different services during workflow execution. Several experiments performed on real data gathered from public workflows, such as SciPhy, Montage, LIGO and SIPHT, indicate the effectiveness of the proposed approach. (C) 2019 Elsevier B.V. All rights reserved.
机译:云计算依靠资源共享为科学家提供可靠的环境,以便将他们基于模拟的实验部署到分布式虚拟资源上,以执行各种科学实验。可以将这些实验建模为科学工作流程,其中许多实验都是数据密集型的,并且会产生大量数据,这些数据也由科学工作流程管理系统(SWfMS)使用存储服务存储在云中。关于云存储服务的一个经常关注的问题是存储数据的机密性,即,如果未经授权的人员访问数据文件,他们可以推断出有关结果甚至工作流程规范的知识。加密是一种潜在的解决方案,但可能还不够。可以添加新级别的安全性以保持数据机密性:数据分散。为了降低风险,不能将生成的数据文件放置在同一位置,或者至少必须将敏感数据文件分布在许多云存储服务中。在本文中,我们介绍了OPTIC(工作流程结果的OPTimizing机密性),该方法旨在通过诸如数学编程和启发式方法之类的优化技术在云存储服务中保留工作流程结果机密性。 OPTIC为在工作流程执行期间生成的数据文件生成分发计划。该计划考虑到数据文件之间的冲突和限制,将数据文件分散在几个云存储服务中以保持机密性。然后,此分发计划被发送到SWfMS,SWfMS在工作流程执行期间将生成的数据有效地存储到不同服务中的特定存储区中。对从公共工作流程(例如SciPhy,Montage,LIGO和SIPHT)收集的真实数据进行的几次实验表明了该方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号